Unanticipated Mechanism of the Trimethylsilyl Motif in Electrolyte Additives on Nickel-Rich Cathodes in Lithium-Ion Batteries

Cited 38 time in webofscience Cited 0 time in scopus
  • Hit : 270
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Min Wooko
dc.contributor.authorPark, Sewonko
dc.contributor.authorChoi, Nam-Soonko
dc.date.accessioned2021-08-20T06:30:14Z-
dc.date.available2021-08-20T06:30:14Z-
dc.date.created2021-08-20-
dc.date.created2021-08-20-
dc.date.created2021-08-20-
dc.date.created2021-08-20-
dc.date.issued2020-09-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v.12, no.39, pp.43694 - 43704-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/287262-
dc.description.abstractThe introduction of a trimethylsilyl (TMS) motif in electrolyte additives for lithium-ion batteries is regarded as an effectual approach to remove corrosive hydrofluoric acid (HF) that structurally and compositionally damages the electrode-electrolyte interface and gives rise to transition metal dissolution from the cathode. Herein, we present that electrolyte additives with TMS moieties lead to continued capacity loss of polycrystalline (PC)-LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes coupled with graphite anodes compared to additives without TMS as the cycle progresses. Through a comparative study using electrolyte additives with and without TMS moieties, it is revealed that the TMS group is prone to react with residual lithium compounds, in particular, lithium hydroxide (LiOH) on the PC-NCM811 cathode, and the resulting TMS-OH triggers the decomposition of PF5 created by the autocatalytic decomposition of LiPF6 that generates reactive species, namely, HF and POF3. This work aims to offer a way to build favorable interface structures for Ni-rich cathodes covered with residual lithium compounds through a study to figure out the roles of TMS moieties of electrolyte additives.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleUnanticipated Mechanism of the Trimethylsilyl Motif in Electrolyte Additives on Nickel-Rich Cathodes in Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.wosid000577111700035-
dc.identifier.scopusid2-s2.0-85092681924-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue39-
dc.citation.beginningpage43694-
dc.citation.endingpage43704-
dc.citation.publicationnameACS APPLIED MATERIALS & INTERFACES-
dc.identifier.doi10.1021/acsami.0c11996-
dc.contributor.localauthorChoi, Nam-Soon-
dc.contributor.nonIdAuthorPark, Min Woo-
dc.contributor.nonIdAuthorPark, Sewon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorelectrolyte additive-
dc.subject.keywordAuthortrimethylsilyl group-
dc.subject.keywordAuthorNi-rich cathode-
dc.subject.keywordAuthorresidual lithium-
dc.subject.keywordAuthorlithium-ion battery-
dc.subject.keywordPlusLAYERED NI-RICH-
dc.subject.keywordPlusTRIS(TRIMETHYLSILYL) PHOSPHITE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTABILITY-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 38 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0