Network representation and passivity of delayed teleoperation systems

Cited 48 time in webofscience Cited 0 time in scopus
  • Hit : 120
  • Download : 0
The paper proposes a general network based analysis and design guidelines for teleoperation systems. The electrical domain is appealing because it enjoys proficient analysis and design tools and allows a one step higher abstraction element, the network. Thus, in order to analyze the system by means of network elements the mechanical system must be first modeled as an electric circuit. Only then power ports become apparent and networks can be defined. This kind of analysis has been previously performed in systems with well defined causalities, specially in the communication channel. Indeed, a communication channel exchanging flow-like and effort-like signals, as for instance velocity and computed force, has a well defined causality and can thus be directly mapped as a two-port electrical network. However, this is only one of the many possible system architectures. This paper investigates how other architectures, including those with ambiguous causalities, can be modeled by means of networks, even in the lack of flow or effort being transmitted, and how they can be made passive for any communication channel characteristic (delay, package-loss and jitter). The methods are exposed in the form of design guidelines sustained with an example and validated with experimental results.
Publisher
IEEE Robotics and Automation Society (RAS)
Issue Date
2011-09-25
Language
English
Citation

2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.177 - 183

ISSN
2153-0858
URI
http://hdl.handle.net/10203/286324
Appears in Collection
CE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 48 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0