Spin-Orbit Torque Driven Magnetization Switching and Precession by Manipulating Thickness of CoFeB/W Heterostructures

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 120
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Changsooko
dc.contributor.authorChun, Byong Sunko
dc.contributor.authorYoon, Jungbumko
dc.contributor.authorKim, Dongseukko
dc.contributor.authorKim, Yong Jinko
dc.contributor.authorCha, In Hoko
dc.contributor.authorKim, Gyu Wonko
dc.contributor.authorKim, Dae Hyunko
dc.contributor.authorMoon, Kyoung-Woongko
dc.contributor.authorKim, Young Keunko
dc.contributor.authorHwang, Chanyongko
dc.date.accessioned2021-06-27T02:10:04Z-
dc.date.available2021-06-27T02:10:04Z-
dc.date.created2021-06-27-
dc.date.created2021-06-27-
dc.date.issued2020-02-
dc.identifier.citationADVANCED ELECTRONIC MATERIALS, v.6, no.2-
dc.identifier.issn2199-160X-
dc.identifier.urihttp://hdl.handle.net/10203/286267-
dc.description.abstractThe switching of magnetization via spin-orbit torque has attracted much attention because of its fast switching and low power consumption. Numerous studies have focused on increasing the conversion efficiency from charge to spin current and out-of-plane magnetization cases. Recently, there have been reports on the fast and deterministic switching of in-plane magnetization devices. It is reported that an in-plane spin-orbit torque (SOT) device can archive the oscillation, precession, and direct switching by a combination of torques-controlling the thickness of the ferromagnet and normal metal. With proper layer thicknesses, the device can show the three dynamics listed above at each current density in a macro spin simulation. Based on an understanding of the role of torque-driving magnetization dynamics, a dynamic map of an in-plane SOT device depending on torque efficiency and current density is shown.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleSpin-Orbit Torque Driven Magnetization Switching and Precession by Manipulating Thickness of CoFeB/W Heterostructures-
dc.typeArticle-
dc.identifier.wosid000514635800016-
dc.identifier.scopusid2-s2.0-85078046030-
dc.type.rimsART-
dc.citation.volume6-
dc.citation.issue2-
dc.citation.publicationnameADVANCED ELECTRONIC MATERIALS-
dc.identifier.doi10.1002/aelm.201901004-
dc.contributor.nonIdAuthorChun, Byong Sun-
dc.contributor.nonIdAuthorYoon, Jungbum-
dc.contributor.nonIdAuthorKim, Dongseuk-
dc.contributor.nonIdAuthorKim, Yong Jin-
dc.contributor.nonIdAuthorCha, In Ho-
dc.contributor.nonIdAuthorKim, Gyu Won-
dc.contributor.nonIdAuthorKim, Dae Hyun-
dc.contributor.nonIdAuthorMoon, Kyoung-Woong-
dc.contributor.nonIdAuthorKim, Young Keun-
dc.contributor.nonIdAuthorHwang, Chanyong-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthormagnetization switching-
dc.subject.keywordAuthorspin orbit torque-
dc.subject.keywordAuthorspin precession-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0