Flexible temperature sensors made of aligned electrospun carbon nanofiber films with outstanding sensitivity and selectivity towards temperature

Cited 61 time in webofscience Cited 0 time in scopus
  • Hit : 310
  • Download : 0
Continuous real-time measurement of body temperature using a wearable sensor is an essential part of human health monitoring. Electrospun aligned carbon nanofiber (ACNF) films are employed to assemble flexible temperature sensors. The temperature sensor prepared at a low carbonization temperature of 650 degrees C yields an outstanding sensitivity of 1.52% degrees C-1, high accuracy, good linearity, fast response time and excellent long-term durability. Moreover, it exhibits high discriminability towards temperature amidst other unwanted stimuli and maintains its original performance even after repeated stretch/release cycles because of highly-aligned structures. The correlation between the atomic structure and the temperature sensing performance of ACNF sensors is established. Contrary to conventional highly conductive temperature sensors, the ACNF sensor with a low electrical conductivity prepared at a low carbonization temperature ameliorates the temperature sensing performance. This anomaly is explained by (i) the smaller and more disordered sp(2) carbon crystallites yielding a high negative temperature coefficient, (ii) a larger number of defects, and (iii) a higher pyridinic-N content generating abundant entrapped and localized electrons which are activated once sufficient thermal energy is available. Flexible ACNF sensor's overall performance is among the best-known carbon material-based flexible temperature sensors, demonstrating potential applications in emerging healthcare and flexible electronics technologies.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2021-05
Language
English
Article Type
Article
Citation

MATERIALS HORIZONS, v.8, no.5, pp.1488 - 1498

ISSN
2051-6347
DOI
10.1039/d1mh00018g
URI
http://hdl.handle.net/10203/285590
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 61 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0