Photothermal Fabrics for Efficient Oil-Spill Remediation via SolarDriven Evaporation Combined with Adsorption

Cited 20 time in webofscience Cited 0 time in scopus
  • Hit : 172
  • Download : 0
Oil spill rapidly destroys aquatic system and threatens humans, requiring fast and efficient remedy for removal of oil. The conventional remedy employs water-floating oil adsorbents whose volume should be large enough to accommodate all oil ingredients. Here, we suggest a new concept for efficient oil-spill remediation, which combines solar-driven evaporation of light oil components and simultaneous adsorption of heavy oil components, namely, solar- driven evaporation of oil combined with adsorption (SEOA). To design photothermal oil absorbents for the efficient SEOA, we designed carbonaceous fabrics with high photothermal heating performance and oil-adsorption capacity by carbonizing nonwoven cotton fabrics. For three model organic solvents of octane, decane, and dodecane floating on water, the fabrics, respectively, accelerated the evaporation in factors of 2.0, 4.4, and 2.3 through photothermal heating under simulated sunlight condition. For the 1.18 mm thick crude oil floating on water, 70 and 77 wt % of crude oil were evaporated within 2 and 16 h, respectively, with the photothermal fabrics, whereas only 22 and 34 wt % was evaporated in the absence of the fabrics, indicating the dramatic enhancement of oil removal by solar-driven evaporation. The remaining heavy oil components were accommodated in the pores of the fabrics, removal of which showed an additional 18 wt % reduction; that is, a total 95 wt % of the crude oil was removed. The oil-treatment capacity is as high as 110 g g(-1), which has never been achieved with conventional oil adsorbents to the best of our knowledge. We believe that our combinatorial SEOA approach potentially contributes to minimizing the environmental disaster through a fast and efficient oil-spill remediation.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-03
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.13, no.11, pp.13106 - 13113

ISSN
1944-8244
DOI
10.1021/acsami.0c21656
URI
http://hdl.handle.net/10203/282552
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 20 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0