Atomistic deformation behavior of single and twin crystalline Cu nanopillars with preexisting dislocations

Cited 21 time in webofscience Cited 15 time in scopus
  • Hit : 163
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKo, Won-Seokko
dc.contributor.authorStukowski, Alexanderko
dc.contributor.authorHadian, Rahelehko
dc.contributor.authorNematollahi, Aliko
dc.contributor.authorJeon, Jong Baeko
dc.contributor.authorChoi, Won Seokko
dc.contributor.authorDehm, Gerhardko
dc.contributor.authorNeugebauer, Joergko
dc.contributor.authorKirchlechner, Christophko
dc.contributor.authorGrabowski, Blazejko
dc.date.accessioned2021-03-26T02:13:00Z-
dc.date.available2021-03-26T02:13:00Z-
dc.date.created2020-09-23-
dc.date.issued2020-09-
dc.identifier.citationACTA MATERIALIA, v.197, pp.54 - 68-
dc.identifier.issn1359-6454-
dc.identifier.urihttp://hdl.handle.net/10203/281903-
dc.description.abstractMolecular dynamics simulations are performed to investigate the impact of a coherent Sigma 3 (111) twin boundary on the plastic deformation behavior of Cu nanopillars. Our work reveals that the mechanical response of pillars with and without the twin boundary is decisively driven by the characteristics of initial dislocation sources. In the condition of comparably large pillar size and abundant initial mobile dislocations, overall yield and flow stresses are controlled by the longest, available mobile dislocation. An inverse correlation of the yield and flow stresses with the length of the longest dislocation is established and compared to experimental data. The experimentally reported subtle differences in yield and flow stresses between pillars with and without the twin boundary are likely related to the maximum lengths of the mobile dislocations. In the condition of comparably small pillar size, for which a reduction of mobile dislocations during heat treatment and mechanical loading occurs, the mechanical response of pillars with and without the twin boundary can be clearly distinguished. Dislocation starvation during deformation is more pronounced in pillars without the twin boundary than in pillars with the twin boundary because the twin boundary acts as a pinning surface for the dislocation network.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleAtomistic deformation behavior of single and twin crystalline Cu nanopillars with preexisting dislocations-
dc.typeArticle-
dc.identifier.wosid000564768300006-
dc.identifier.scopusid2-s2.0-85088386858-
dc.type.rimsART-
dc.citation.volume197-
dc.citation.beginningpage54-
dc.citation.endingpage68-
dc.citation.publicationnameACTA MATERIALIA-
dc.identifier.doi10.1016/j.actamat.2020.07.029-
dc.contributor.nonIdAuthorKo, Won-Seok-
dc.contributor.nonIdAuthorStukowski, Alexander-
dc.contributor.nonIdAuthorHadian, Raheleh-
dc.contributor.nonIdAuthorNematollahi, Ali-
dc.contributor.nonIdAuthorJeon, Jong Bae-
dc.contributor.nonIdAuthorDehm, Gerhard-
dc.contributor.nonIdAuthorNeugebauer, Joerg-
dc.contributor.nonIdAuthorKirchlechner, Christoph-
dc.contributor.nonIdAuthorGrabowski, Blazej-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorNanopillar-
dc.subject.keywordAuthorCompression-
dc.subject.keywordAuthorGrain boundary-
dc.subject.keywordAuthorMolecular dynamics simulation-
dc.subject.keywordAuthorNanomechanics-
dc.subject.keywordPlusIN-SITU TEM-
dc.subject.keywordPlusMOLECULAR-DYNAMICS SIMULATIONS-
dc.subject.keywordPlusFAULT TETRAHEDRON INTERACTIONS-
dc.subject.keywordPlusSCREW DISLOCATION-
dc.subject.keywordPlusULTRAHIGH STRENGTH-
dc.subject.keywordPlusSLIP TRANSMISSION-
dc.subject.keywordPlusMIXED DISLOCATION-
dc.subject.keywordPlusPART I-
dc.subject.keywordPlusBOUNDARY-
dc.subject.keywordPlusMECHANISMS-
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0