Use of rigid cucurbit[6]uril mediating selective water transport as a potential remedy to improve the permselectivity and durability of reverse osmosis membranes

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 48
  • Download : 0
In spite of many efforts to grasp the nature of porous nanomaterials, it is hard to find research work addressing empirical evidence for selective water permeation through their channels or pores. Herein, we report the experimental proof of selective water permeation through cucurbit [6] uril (CB [6]) with a portal diameter of 3.9 angstrom along with quantum mechanics calculation results elucidating the mechanisms underlying the selective water transport. CB[6] improved the water/salt permselectivity of CB [6]-polyamide thin-film nanocomposite (CB[6]-TFN) membranes since ion passage was inhibited by a high energy barrier imposed by the CB [6]'s portals while the portals are energetically favorable from the perspective of water transport. This difference in water and salt's permeabilities stems from its carbonyl-fringed portals, which are cut out for size exclusion and negatively charged for charge repulsion. Due to the rigidity, CB[6]-TFN membranes were found to be more resistant to compaction under elevated pressures. Such unique characteristics of CB[6] allowed CB[6]-TFN membranes to outperform newly developed TFN membranes as well as commercial RO membranes.
Publisher
ELSEVIER
Issue Date
2021-04
Language
English
Article Type
Article
Citation

JOURNAL OF MEMBRANE SCIENCE, v.623

ISSN
0376-7388
DOI
10.1016/j.memsci.2020.119017
URI
http://hdl.handle.net/10203/281625
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0