In Operando Stacking of Reduced Graphene Oxide for Active Hydrogen Evolution

Cited 11 time in webofscience Cited 10 time in scopus
  • Hit : 185
  • Download : 0
Despite the remarkable electronic and mechanical properties of graphene, improving the catalytic activity of the atomically flat, inert, and stable carbon network remains a challenging issue in both fundamental and application studies. In particular, the adsorption of most molecules and ions, including hydrogen (H-2 or H+), on graphene is not favorable, underlining the challenge for an efficient electrochemical catalytic reaction on graphene. Various defects, edges, and functionalization have been suggested to resolve the catalytic issue in graphene, but cost-effectiveness and active catalysis with graphene have not been achieved yet. Here, we introduce dynamic stacking of reduced graphene oxide (rGO) with spontaneously generated hydrogen bubbles to form an efficient electrochemical catalyst with a graphene derivative; the in operando stacking of rGO, without using a high-temperature-based heteroatom doping process or plasma treatment, creates a large catalytic surface area with optimized edges and acidic groups in the rGO. Thus, the uniquely formed stable carbon network achieves active hydrogen evolution with a Tafel slope of 39 mV.dec(-1) and a double layer capacitance of 12.41 mF.cm(-2), which breaks the conventional limit of graphene-based catalysis, suggesting a promising strategy for metal-free catalyst engineering and hydrogen production.
Publisher
American Chemical Society
Issue Date
2019-11
Language
English
Article Type
Article
Citation

ACS Applied Materials and Interfaces, v.11, no.46, pp.43460 - 43465

ISSN
1944-8244
DOI
10.1021/acsami.9b11619
URI
http://hdl.handle.net/10203/280189
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0