Adjustable Quantum Interference Oscillations in Sb-Doped Bi2Se3 Topological Insulator Nanoribbons

Cited 13 time in webofscience Cited 7 time in scopus
  • Hit : 357
  • Download : 0
Topological insulator (TI) nanoribbons (NRs) provide a platform for investigating quantum interference oscillations combined with topological surface states. One-dimensional subbands formed along the perimeter of a TI NR can be modulated by an axial magnetic field, exhibiting Aharonov-Bohm (AB) and Altshuler-Aronov-Spivak (AAS) oscillations of magnetoconductance (MC). Using Sb-doped Bi2Se3 TI NRs, we found that the relative amplitudes of the two quantum oscillations can be tuned by varying the channel length, exhibiting crossover from quasi-ballistic to diffusive transport regimes. The AB and AAS oscillations were discernible even for a 70 mu m long channel, while only the AB oscillations were observed for a short channel. Analyses based on ensemble-averaged fast Fourier transform of MC curves revealed exponential temperature dependences of the AB and AAS oscillations, from which the circumferential phase-coherence length and thermal length were obtained. Our observations indicate that the channel length in a TI NR can be a useful control knob for tailored quantum interference oscillations, especially for developing topological hybrid quantum devices.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-10
Language
English
Article Type
Article
Citation

ACS NANO, v.14, no.10, pp.14118 - 14125

ISSN
1936-0851
DOI
10.1021/acsnano.0c06892
URI
http://hdl.handle.net/10203/279184
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0