Adjustable Quantum Interference Oscillations in Sb-Doped Bi2Se3 Topological Insulator Nanoribbons

Cited 13 time in webofscience Cited 7 time in scopus
  • Hit : 358
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Hong-Seokko
dc.contributor.authorHwang, Tae-Hako
dc.contributor.authorKim, Nam-Heeko
dc.contributor.authorHou, Yasenko
dc.contributor.authorYu, Dongko
dc.contributor.authorSim, Heung-Sunko
dc.contributor.authorDoh, Yong-Jooko
dc.date.accessioned2020-12-28T09:10:19Z-
dc.date.available2020-12-28T09:10:19Z-
dc.date.created2020-11-26-
dc.date.issued2020-10-
dc.identifier.citationACS NANO, v.14, no.10, pp.14118 - 14125-
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/10203/279184-
dc.description.abstractTopological insulator (TI) nanoribbons (NRs) provide a platform for investigating quantum interference oscillations combined with topological surface states. One-dimensional subbands formed along the perimeter of a TI NR can be modulated by an axial magnetic field, exhibiting Aharonov-Bohm (AB) and Altshuler-Aronov-Spivak (AAS) oscillations of magnetoconductance (MC). Using Sb-doped Bi2Se3 TI NRs, we found that the relative amplitudes of the two quantum oscillations can be tuned by varying the channel length, exhibiting crossover from quasi-ballistic to diffusive transport regimes. The AB and AAS oscillations were discernible even for a 70 mu m long channel, while only the AB oscillations were observed for a short channel. Analyses based on ensemble-averaged fast Fourier transform of MC curves revealed exponential temperature dependences of the AB and AAS oscillations, from which the circumferential phase-coherence length and thermal length were obtained. Our observations indicate that the channel length in a TI NR can be a useful control knob for tailored quantum interference oscillations, especially for developing topological hybrid quantum devices.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleAdjustable Quantum Interference Oscillations in Sb-Doped Bi2Se3 Topological Insulator Nanoribbons-
dc.typeArticle-
dc.identifier.wosid000586793400158-
dc.identifier.scopusid2-s2.0-85094640234-
dc.type.rimsART-
dc.citation.volume14-
dc.citation.issue10-
dc.citation.beginningpage14118-
dc.citation.endingpage14125-
dc.citation.publicationnameACS NANO-
dc.identifier.doi10.1021/acsnano.0c06892-
dc.contributor.localauthorSim, Heung-Sun-
dc.contributor.nonIdAuthorKim, Hong-Seok-
dc.contributor.nonIdAuthorHwang, Tae-Ha-
dc.contributor.nonIdAuthorKim, Nam-Hee-
dc.contributor.nonIdAuthorHou, Yasen-
dc.contributor.nonIdAuthorYu, Dong-
dc.contributor.nonIdAuthorDoh, Yong-Joo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthortopological insulator nanoribbon-
dc.subject.keywordAuthorSb-doped Bi2Se3 nanoribbons-
dc.subject.keywordAuthortopological surface state-
dc.subject.keywordAuthorAharonov-Bohm oscillations-
dc.subject.keywordAuthorAltshuler-Aronov-Spivak oscillations-
dc.subject.keywordPlusAHARONOV-BOHM OSCILLATIONS-
dc.subject.keywordPlusSURFACE-STATES-
dc.subject.keywordPlusTRANSPORT-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0