Ultrafast Local Outlier Detection from a Data Stream with Stationary Region Skipping

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 14
  • Download : 0
Real-time outlier detection from a data stream is an increasingly important problem, especially as sensor-generated data streams abound in many applications owing to the prevalence of IoT and emergence of digital twins. Several density-based approaches have been proposed to address this problem, but arguably none of them is fast enough to meet the performance demand of real applications. This paper is founded upon a novel observation that, in many regions of the data space, data distributions hardly change across window slides. We propose a new algorithm, abbr. STARE, which identifies local regions in which data distributions hardly change and then skips updating the densities in those regions-a notion called stationary region skipping. Two techniques, data distribution approximation and cumulative net-change-based skip, are employed to efficiently and effectively implement the notion. Extensive experiments using synthetic and real data streams as well as a case study show that STARE is several orders of magnitude faster than the existing algorithms while achieving comparable or higher accuracy.
Association for Computing Machinery
Issue Date

26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020, pp.1181 - 1191

Appears in Collection
CS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.


  • mendeley


rss_1.0 rss_2.0 atom_1.0