Laser Synthesis of MOF-Derived Ni@Carbon for High-Performance Pseudocapacitors

Cited 53 time in webofscience Cited 33 time in scopus
  • Hit : 347
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorDo Van Lamko
dc.contributor.authorSohail, Muhammadko
dc.contributor.authorKim, Jae-Hyunko
dc.contributor.authorLee, Hak Jooko
dc.contributor.authorHan, Seong Okko
dc.contributor.authorShin, Jonghwako
dc.contributor.authorKim, Duckjongko
dc.contributor.authorKim, Hyunukko
dc.contributor.authorLee, Seung-Moko
dc.date.accessioned2020-10-22T01:55:05Z-
dc.date.available2020-10-22T01:55:05Z-
dc.date.created2020-10-13-
dc.date.created2020-10-13-
dc.date.issued2020-09-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v.12, no.35, pp.39154 - 39162-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/276853-
dc.description.abstractAlthough nanosizing of multiphase pseudocapacitive nanomaterials could dramatically improve their electrochemical properties, a proper way to simultaneously control both the size and the phase of the pseudocapacitive materials is still elusive. Herein, we employed a commercial CO2 laser engraver to do the transformation of a metal-organic framework (MOF-74(Ni)) into size-controlled Ni nanoparticles (4-12 nm) in porous carbon. The produced Ni@ carbon hybrid showed the best specific capacitance of 925 F/g with excellent cycling stability when the particle size is 5.5 nm. We found that the highly redoxactive alpha-Ni(OH)(2) is more predominantly formed than the less redox-active beta-Ni(OH)(2) as the particle size becomes smaller. Our results substantiate that various MOFs could be created into high-performance pseudocapacitive materials with the controlled size and phase. It is believed that the laser-based synthesis could also serve as a powerful tool for the discovery of new MOF-derived materials in the field of energy storage and catalysis.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleLaser Synthesis of MOF-Derived Ni@Carbon for High-Performance Pseudocapacitors-
dc.typeArticle-
dc.identifier.wosid000569268800032-
dc.identifier.scopusid2-s2.0-85090287593-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue35-
dc.citation.beginningpage39154-
dc.citation.endingpage39162-
dc.citation.publicationnameACS APPLIED MATERIALS & INTERFACES-
dc.identifier.doi10.1021/acsami.0c10235-
dc.contributor.localauthorShin, Jonghwa-
dc.contributor.nonIdAuthorDo Van Lam-
dc.contributor.nonIdAuthorSohail, Muhammad-
dc.contributor.nonIdAuthorKim, Jae-Hyun-
dc.contributor.nonIdAuthorLee, Hak Joo-
dc.contributor.nonIdAuthorHan, Seong Ok-
dc.contributor.nonIdAuthorKim, Duckjong-
dc.contributor.nonIdAuthorKim, Hyunuk-
dc.contributor.nonIdAuthorLee, Seung-Mo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorlaser synthesis-
dc.subject.keywordAuthormetal-organic framework-
dc.subject.keywordAuthornanoparticle-
dc.subject.keywordAuthorpseudocapacitive material-
dc.subject.keywordAuthorelectrochemical energy storage-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusSURFACE-DIFFUSION-
dc.subject.keywordPlusACTIVATED CARBON-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusSUPERCAPACITOR-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusTEXTILE-
dc.subject.keywordPlusSTORAGE-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 53 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0