Heavily Crosslinked, High-kUltrathin Polymer Dielectrics for Flexible, Low-Power Organic Thin-Film Transistors (OTFTs)

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 36
  • Download : 0
High dielectric constant (k) and excellent insulating performance together with the thickness down-scalability are essential requirements for polymer dielectrics to realize the stable operation of flexible, low-power electronics. Crosslinking has been applied frequently to the dielectric polymer matrix to enhance the insulating performance. However, the addition of crosslinker into the polymer has been often accompanied by the reduction of the dielectric constant thereof. Herein, a series of copolymer dielectrics is synthesized composed of two monomers of 2-cyanoethyl acrylate (CEA) possessing a highly polar cyanide functional group and 1,4-butanediol divinyl ether (BDDVE), a crosslinker with relatively short chain length. The chemical composition of the 30-nm-thick copolymer dielectrics is optimized to achieve extremely low leakage current (<3.0 x 10(-8)A cm(-2)in the range of +/- 2 MV cm(-1)) with unprecedentedly high dielectric constant of 7.5, which is, to the knowledge, the highest dielectric constant among the sub-50 nm polymer dielectrics without inorganic component, reported to date. Exploiting the copolymer dielectric layers, high-performance, low-power organic thin-film transistors (OTFTs) with high operational stability and extreme mechanical flexibility are demonstrated. It is believed that the high-kdielectric copolymer films presented in this study will be an important guideline to develop future flexible, wearable electronics.
Publisher
WILEY
Issue Date
2020-07
Language
English
Article Type
Article
Citation

ADVANCED ELECTRONIC MATERIALS, v.6, no.8, pp.2000314

ISSN
2199-160X
DOI
10.1002/aelm.202000314
URI
http://hdl.handle.net/10203/276683
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0