Genetic Impairment of Cellulose Biosynthesis Increases Cell Wall Fragility and Improves Lipid Extractability from Oleaginous AlgaNannochloropsis salina

Cited 8 time in webofscience Cited 5 time in scopus
  • Hit : 361
  • Download : 103
DC FieldValueLanguage
dc.contributor.authorJeong, Seok Wonko
dc.contributor.authorHwangBo, Kwonko
dc.contributor.authorLim, Jong Minko
dc.contributor.authorNam, Seung Wonko
dc.contributor.authorLee, Bong Sooko
dc.contributor.authorJeong, Byeong-ryoolko
dc.contributor.authorChang, Yong Keunko
dc.contributor.authorJeong, Won-Joongko
dc.contributor.authorPark, Youn-Ilko
dc.date.accessioned2020-10-16T07:55:05Z-
dc.date.available2020-10-16T07:55:05Z-
dc.date.created2020-10-06-
dc.date.issued2020-08-
dc.identifier.citationMICROORGANISMS, v.8, no.8-
dc.identifier.issn2076-2607-
dc.identifier.urihttp://hdl.handle.net/10203/276660-
dc.description.abstractIn microalgae, photosynthesis provides energy and sugar phosphates for the biosynthesis of storage and structural carbohydrates, lipids, and nitrogenous proteins. The oleaginous algaNannochloropsis salinadoes not preferentially partition photoassimilates among cellulose, chrysolaminarin, and lipids in response to nitrogenous nutrient deprivation. In the present study, we investigated whether genetic impairment of the cellulose synthase gene (CesA) expression would lead to protein accumulation without the accumulation of storage C polymers inN. salina. ThreecesAmutants were generated by the CRISPR/Cas9 approach. Cell wall thickness and cellulose content were reduced in thecesA1mutant, but not incesA2orcesA4cells.CesA1mutation resulted in a reduction of chrysolaminarin and neutral lipid contents, by 66.3% and 37.1%, respectively, but increased the soluble protein content by 1.8-fold. Further,N. salinacells with a thinned cell wall were susceptible to mechanical stress, resulting in a 1.7-fold enhancement of lipid extractability. Taken together, the previous and current studies strongly suggest the presence of a controlling mechanism that regulates photoassimilate partitioning toward C and N metabolic pathways as well as the cellulose metabolism as a potential target for cost-effective microalgal cell disruption and as a useful protein production platform.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleGenetic Impairment of Cellulose Biosynthesis Increases Cell Wall Fragility and Improves Lipid Extractability from Oleaginous AlgaNannochloropsis salina-
dc.typeArticle-
dc.identifier.wosid000567267000001-
dc.identifier.scopusid2-s2.0-85090629754-
dc.type.rimsART-
dc.citation.volume8-
dc.citation.issue8-
dc.citation.publicationnameMICROORGANISMS-
dc.identifier.doi10.3390/microorganisms8081195-
dc.contributor.localauthorChang, Yong Keun-
dc.contributor.nonIdAuthorJeong, Seok Won-
dc.contributor.nonIdAuthorHwangBo, Kwon-
dc.contributor.nonIdAuthorLim, Jong Min-
dc.contributor.nonIdAuthorNam, Seung Won-
dc.contributor.nonIdAuthorLee, Bong Soo-
dc.contributor.nonIdAuthorJeong, Byeong-ryool-
dc.contributor.nonIdAuthorJeong, Won-Joong-
dc.contributor.nonIdAuthorPark, Youn-Il-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcell wall-
dc.subject.keywordAuthorcellulose synthase CesA-
dc.subject.keywordAuthorcesAmutant-
dc.subject.keywordAuthorCRISPR-
dc.subject.keywordAuthorCas9-
dc.subject.keywordAuthorphotosynthate partitioning-
dc.subject.keywordAuthorNannochloropsis-
dc.subject.keywordPlusMICROALGAE-
dc.subject.keywordPlusULTRASTRUCTURE-
dc.subject.keywordPlusACCUMULATION-
dc.subject.keywordPlusCULTIVATION-
dc.subject.keywordPlusSTRAINS-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusACID-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0