Thermal display glove for interacting with virtual reality

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 31
  • Download : 2
Thermal perception is essential for the survival and daily activities of people. Thus, it is desirable to realize thermal feedback stimulation for improving the sense of realism in virtual reality (VR) for users. For thermal stimulus, conventional systems utilize liquid circulation with bulky external sources or thermoelectric devices (TEDs) on rigid structures. However, these systems are difficult to apply to compact wearable gear used for complex hand motions to interact with VR. Furthermore, generating a rapid temperature difference, especially cooling, in response to a thermal stimulus in real-time is challenging for the conventional systems. To overcome this challenge and enhance wearability, we developed an untethered real-time thermal display glove. This glove comprised piezoelectric sensors enabling hand motion sensing and flexible TEDs for bidirectional thermal stimulus on skin. The customized flexible TEDs can decrease the temperature by 10 degrees C at room temperature in less than 0.5 s. Moreover, they have sufficiently high durability to withstand over 5,000 bends and high flexibility under a bending radius of 20 mm. In a user test with 20 subjects, the correlation between thermal perception and the displayed object's color was verified, and a survey result showed that the thermal display glove provided realistic and immersive experiences to users when interacting with VR.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2020-07
Language
English
Article Type
Article
Citation

SCIENTIFIC REPORTS, v.10, no.1

ISSN
2045-2322
DOI
10.1038/s41598-020-68362-y
URI
http://hdl.handle.net/10203/275803
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
115585.pdf(2.64 MB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0