Gold Recovery from E-Waste by Porous Porphyrin-Phenazine Network Polymers

Cited 95 time in webofscience Cited 31 time in scopus
  • Hit : 262
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorThien S Nguyenko
dc.contributor.authorHong, Yeongranko
dc.contributor.authorDogan, Nesibe A.ko
dc.contributor.authorYavuz, Cafer T.ko
dc.date.accessioned2020-07-22T08:55:06Z-
dc.date.available2020-07-22T08:55:06Z-
dc.date.created2020-07-20-
dc.date.created2020-07-20-
dc.date.issued2020-06-
dc.identifier.citationCHEMISTRY OF MATERIALS, v.32, no.12, pp.5343 - 5349-
dc.identifier.issn0897-4756-
dc.identifier.urihttp://hdl.handle.net/10203/275610-
dc.description.abstractGold recovery from electronic waste could prevent excessive mining with toxic extractants and provide a sustainable path for recycling precious metals. Unfortunately, no viable recycling is practiced, except burning electronic circuit boards in underdeveloped countries, mainly because of the lack of chemical scavengers as adsorbents. Here, we report the synthesis of a family of porphyrin- phenazine-based polymers and their gold-capturing properties as well as application in gold recovery from actual e-waste. The polymers show high selectivity toward gold as well as other precious metals. The Au(III) adsorption isotherms were well-fitted to the Langmuir adsorption model and proportionality between porosity and uptake capacity was observed. Solution pH values and illumination conditions were shown to have influences on the performance of the adsorbents with the highest capacity of 1.354 g/g obtained in acidic pH and under continuous UV irradiation. Such a remarkable capacity of 7 times the theoretical estimate was achieved through photochemical adsorption-reduction mechanism supported by the observed suppressing effect of oxidant on gold-capturing ability. The adsorbents are robust and recyclable, a significant advantage over other emerging materials.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleGold Recovery from E-Waste by Porous Porphyrin-Phenazine Network Polymers-
dc.typeArticle-
dc.identifier.wosid000543738500048-
dc.identifier.scopusid2-s2.0-85087589304-
dc.type.rimsART-
dc.citation.volume32-
dc.citation.issue12-
dc.citation.beginningpage5343-
dc.citation.endingpage5349-
dc.citation.publicationnameCHEMISTRY OF MATERIALS-
dc.identifier.doi10.1021/acs.chemmater.0c01734-
dc.contributor.localauthorYavuz, Cafer T.-
dc.contributor.nonIdAuthorThien S Nguyen-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusAQUEOUS-SOLUTION-
dc.subject.keywordPlusGOLD(III)-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusAU(III)-
dc.subject.keywordPlusCOMPLEX-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 95 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0