Synthesis of highly dispersed Pt nanoparticles into carbon supports by fluidized bed reactor atomic layer deposition to boost PEMFC performance

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 90
  • Download : 61
The performance of proton exchange membrane fuel cells (PEMFCs) depends on the controlled size, dispersion and density of Pt nanoparticles (NPs) on carbon supports, which are strongly affected by the carbon characteristics and fabrication methods. Here, we demonstrated a high-performance Pt/carbon catalyst for PEMFCs using fluidized bed reactor atomic layer deposition (FBR-ALD) that was realized by an effective matching of the carbon supports for the FBR-ALD process and an optimization of the ionomer content during the preparation of the membrane electrode assembly (MEA). For this, the synthesis of Pt NPs was conducted on two porous supports (Vulcan XC-72R and functionalized carbon) by FBR-ALD. The functionalized carbon possessed a higher surface area with a large pore volume, abundant defects in a disordered structure and a large number of oxygen functional groups compared to those of the well-known Vulcan carbon. The favorable surface characteristics of the functionalized carbon for nucleation produced Pt particles with an increased uniformity and density and a narrow size range, which led to a higher electrochemical surface area (ECSA) than that of Pt/Vulcan carbon and commercial Pt/carbon. The PEMFC test of the respective Pt/carbon samples was investigated, and highly dense and uniform Pt/functionalized-carbon showed the highest performance through optimization of the higher ionomer content compared to that for the ALD Pt growth on Vulcan carbon and commercial Pt/carbon. In addition, the Pt catalyst using ALD demonstrated a significant long-term stability for the PEMFC. This finding demonstrates the remarkable advantages of FBR-ALD for the fabrication of Pt/carbon and the ability of functionalized carbon supports to achieve a high PEMFC efficiency and an enhanced durability.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2020-06
Language
English
Article Type
Article
Citation

NPG ASIA MATERIALS, v.12, no.1

ISSN
1884-4049
DOI
10.1038/s41427-020-0223-x
URI
http://hdl.handle.net/10203/275602
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
115365.pdf(4.38 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0