Achieving Fast Proton Transport and High Vanadium Ion Rejection with Uniformly Mesoporous Composite Membranes for High-Efficiency Vanadium Redox Flow Batteries

Cited 15 time in webofscience Cited 8 time in scopus
  • Hit : 474
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJeon, Choongseopko
dc.contributor.authorChoi, Chanyongko
dc.contributor.authorKim, Hee-Takko
dc.contributor.authorSeo, Myungeunko
dc.date.accessioned2020-07-21T02:55:06Z-
dc.date.available2020-07-21T02:55:06Z-
dc.date.created2020-06-17-
dc.date.created2020-06-17-
dc.date.created2020-06-17-
dc.date.issued2020-06-
dc.identifier.citationACS APPLIED ENERGY MATERIALS, v.3, no.6, pp.5874 - 5881-
dc.identifier.issn2574-0962-
dc.identifier.urihttp://hdl.handle.net/10203/275568-
dc.description.abstractWe developed a block polymer-based synthetic route to sulfonated porous composites (SPCs) with precisely controlled nanopore size. By reducing the pore size to <4 nm and introducing a high density of surface sulfonic acid, the permeation of vanadium ions was effectively suppressed. We employed a polymerization-induced microphase separation (PIMS) process, in which a polyethylene fiber mat impregnated with a liquid polymerization mixture was spontaneously transformed into a fiber-reinforced and cross-linked block polymer membrane. Selective etching and sulfonation then produced the target composite membrane. In a vanadium redox flow battery (VRFB) cell, an SPC with 3.6 nm-sized mesopores, 109 m(2) g(-1) of specific surface area, and 0.3 mL g(-1) of mesoporosity outperformed a Nafion 212 membrane of similar thickness, providing higher proton conductivity and much lower vanadium permeability. Thanks to the composite reinforcement, the membrane demonstrated remarkably enhanced mechanical stability. The SPC membrane could be successfully operated up to 300 cycles. Compared with Nafion 212, the SPC exhibited higher energy efficiencies (EEs) and higher discharge capacity retention. These results suggest the promise of block polymer-based permselective membranes in advanced battery applications.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleAchieving Fast Proton Transport and High Vanadium Ion Rejection with Uniformly Mesoporous Composite Membranes for High-Efficiency Vanadium Redox Flow Batteries-
dc.typeArticle-
dc.identifier.wosid000543715100086-
dc.identifier.scopusid2-s2.0-85088283313-
dc.type.rimsART-
dc.citation.volume3-
dc.citation.issue6-
dc.citation.beginningpage5874-
dc.citation.endingpage5881-
dc.citation.publicationnameACS APPLIED ENERGY MATERIALS-
dc.identifier.doi10.1021/acsaem.0c00804-
dc.contributor.localauthorKim, Hee-Tak-
dc.contributor.localauthorSeo, Myungeun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthornanoporous membrane-
dc.subject.keywordAuthorvanadium redox flow battery-
dc.subject.keywordAuthorpermselectivity-
dc.subject.keywordAuthorcomposite-
dc.subject.keywordAuthorblock copolymer self-assembly-
dc.subject.keywordAuthorpolymerization-induced microphase separation-
dc.subject.keywordPlusPOROUS MEMBRANES-
dc.subject.keywordPlusPOLYMERIZATION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusSEPARATOR-
dc.subject.keywordPlusPOLYMERS-
dc.subject.keywordPlusPROGRESS-
dc.subject.keywordPlusSTORAGE-
Appears in Collection
CBE-Journal Papers(저널논문)CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0