A Remark on the Continuous Subsolution Problem for the Complex Monge-Ampere Equation

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 114
  • Download : 60
DC FieldValueLanguage
dc.contributor.authorKolodziej, Slawomirko
dc.contributor.authorNguyen, Ngoc Cuongko
dc.date.accessioned2020-06-18T02:20:04Z-
dc.date.available2020-06-18T02:20:04Z-
dc.date.created2019-12-31-
dc.date.created2019-12-31-
dc.date.created2019-12-31-
dc.date.issued2020-03-
dc.identifier.citationACTA MATHEMATICA VIETNAMICA, v.45, pp.83 - 91-
dc.identifier.issn0251-4184-
dc.identifier.urihttp://hdl.handle.net/10203/274708-
dc.description.abstractWe prove that if the modulus of continuity of a plurisubharmonic subsolution satisfies a Dini-type condition then the Dirichlet problem for the complex Monge-Ampère equation has the continuous solution. The modulus of continuity of the solution also given if the right hand side is locally dominated by capacity.-
dc.languageEnglish-
dc.publisherSPRINGER SINGAPORE PTE LTD-
dc.titleA Remark on the Continuous Subsolution Problem for the Complex Monge-Ampere Equation-
dc.typeArticle-
dc.identifier.scopusid2-s2.0-85073920162-
dc.type.rimsART-
dc.citation.volume45-
dc.citation.beginningpage83-
dc.citation.endingpage91-
dc.citation.publicationnameACTA MATHEMATICA VIETNAMICA-
dc.identifier.doi10.1007/s40306-019-00347-0-
dc.contributor.localauthorNguyen, Ngoc Cuong-
dc.contributor.nonIdAuthorKolodziej, Slawomir-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDirichlet problem-
dc.subject.keywordAuthorComplex Monge-Ampere equation-
dc.subject.keywordAuthorWeak solutions-
dc.subject.keywordAuthorSubsolution problem-
dc.subject.keywordPlusINTEGRABILITY-

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0