Elucidating Roles of Polymer Donor Aggregation in All-Polymer and Non-Fullerene Small-Molecule-Polymer Solar Cells

Cited 36 time in webofscience Cited 31 time in scopus
  • Hit : 291
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Jin Suko
dc.contributor.authorChoi, Nayounko
dc.contributor.authorLee, Changyeonko
dc.contributor.authorLee, Seungjinko
dc.contributor.authorHa, Jong-Woonko
dc.contributor.authorHwang, Do-Hoonko
dc.contributor.authorKim, Bumjoon J.ko
dc.date.accessioned2020-05-22T02:20:07Z-
dc.date.available2020-05-22T02:20:07Z-
dc.date.created2020-05-18-
dc.date.created2020-05-18-
dc.date.created2020-05-18-
dc.date.created2020-05-18-
dc.date.issued2020-04-
dc.identifier.citationCHEMISTRY OF MATERIALS, v.32, no.8, pp.3585 - 3596-
dc.identifier.issn0897-4756-
dc.identifier.urihttp://hdl.handle.net/10203/274256-
dc.description.abstractThe aggregation behavior of polymers plays a crucial role in determining the optical, electrical, and morpho- logical properties of donor-acceptor blends in both all-polymer 12 solar cells (all-PSCs) and non-fullerene small-molecule acceptor-polymer solar cells (NFSMA-PSCs). However, direct comparison of the impacts on two different systems has not been reported, although it is important to design universal polymer donors (P-D's). Herein, three P-D's with different side chains (P-EH, P-SEH, and P-Si) are designed to study the P-D aggregation effects on the blend morphology and device performance of both all-PSCs and NFSMA-PSCs. It is observed that the aggregation property of P-D's is a critical factor in determining the optimal blend morphologies and ultimately the device performances in both PSC systems. Furthermore, P(D )aggregation effects on device performance are significantly more impactful in all-PSCs than in NFSMA-PSCs. The P-Si P-D exhibiting the strongest aggregation behavior in a processing solvent produces the most severe phase separation in the blend with a polymer acceptor, resulting in the lowest power conversion efficiency (PCE) of all-PSCs. In contrast, when P-Si is used in an NFSMA-PSC, a well-mixed blend morphology is observed, which results in the highest PCE of over 12%. These different roles dependent on P-D aggregation mainly originate from the difference in molecular size of the polymer acceptor and small-molecule acceptor, which influences the entropic contribution to the formation of blend morphology. Our work provides a comprehensive understanding of the P-D aggregation- blend morphology relationship in different all-PSC and NFSMA-PSC systems, which serves as an important guideline for the design of universal P-D's for both all-PSCs and NFSMA-PSCs.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleElucidating Roles of Polymer Donor Aggregation in All-Polymer and Non-Fullerene Small-Molecule-Polymer Solar Cells-
dc.typeArticle-
dc.identifier.wosid000529878600029-
dc.identifier.scopusid2-s2.0-85091021352-
dc.type.rimsART-
dc.citation.volume32-
dc.citation.issue8-
dc.citation.beginningpage3585-
dc.citation.endingpage3596-
dc.citation.publicationnameCHEMISTRY OF MATERIALS-
dc.identifier.doi10.1021/acs.chemmater.0c00783-
dc.contributor.localauthorKim, Bumjoon J.-
dc.contributor.nonIdAuthorChoi, Nayoun-
dc.contributor.nonIdAuthorHa, Jong-Woon-
dc.contributor.nonIdAuthorHwang, Do-Hoon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusOPEN-CIRCUIT VOLTAGE-
dc.subject.keywordPlusSIDE-CHAINS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusACCEPTOR-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusMOBILITY-
dc.subject.keywordPlusCRYSTALLINITY-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusOPTIMIZATION-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 36 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0