Direct Solvent-Free Modification of the Inner Wall of the Microchip for Rapid DNA Extraction with Enhanced Capturing Efficiency

Cited 24 time in webofscience Cited 14 time in scopus
  • Hit : 317
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Yunhoko
dc.contributor.authorKim, Yong Taeko
dc.contributor.authorLee, Seok Jaeko
dc.contributor.authorLee, Eunjungko
dc.contributor.authorLee, Kyoung G.ko
dc.contributor.authorIm, Sung Gapko
dc.date.accessioned2020-05-12T09:20:05Z-
dc.date.available2020-05-12T09:20:05Z-
dc.date.created2019-11-11-
dc.date.created2019-11-11-
dc.date.created2019-11-11-
dc.date.issued2020-03-
dc.identifier.citationMACROMOLECULAR RESEARCH, v.28, no.3, pp.249 - 256-
dc.identifier.issn1598-5032-
dc.identifier.urihttp://hdl.handle.net/10203/274170-
dc.description.abstractNucleic acid (NA) extraction and purification are one of the crucial steps for NA-based molecular diagnosis. However, the currently developed methods are still suffering from many issues including long process time, complicated steps, requirement of trained personnel and potential inhibition caused by chaotropic agents and/ or residual reagents. Herein, a surface-modified NA extraction microchip (SNC) is newly fabricated by introducing poly(2-dimethylaminomethyl styrene) (pDMAMS) film engaged directly on the microchip surface via initiated chemical vapor deposition (iCVD) process. The positively charged SNC inner surface could directly capture the negatively charged NA efficiently and its performance is confirmed by fluorescence microscopy and X-ray photoelectron spectroscopy. The developed SNC exhibits the deoxyribonucleic acid (DNA) capture efficiency higher than 92% regardless of initial DNA concentration in range of 20 ng/mu L to 0.01 ng/mu L. With this versatile DNA-capturing surface, the genomic DNAs of Escherichia Coli O157:H7 (E. coli O157:H7) is successfully extracted directly from cell lysate in the SNC with higher than 90% of efficiency within 30 min. The extraction time can be reduced to at least of 10 min maintaining extraction efficiency higher than 50%. Furthermore, the genomic DNAs are directly extracted using the SNC without loss from various real samples including juice, milk and blood serum. The proposed SNC enables us to perform an one-step NA extraction for molecular diagnosis and has the potential to be integrated into a micro-total analysis in the fields of point-of-care diagnosis.-
dc.languageEnglish-
dc.publisherPOLYMER SOC KOREA-
dc.titleDirect Solvent-Free Modification of the Inner Wall of the Microchip for Rapid DNA Extraction with Enhanced Capturing Efficiency-
dc.typeArticle-
dc.identifier.wosid000492717200002-
dc.identifier.scopusid2-s2.0-85074475717-
dc.type.rimsART-
dc.citation.volume28-
dc.citation.issue3-
dc.citation.beginningpage249-
dc.citation.endingpage256-
dc.citation.publicationnameMACROMOLECULAR RESEARCH-
dc.identifier.doi10.1007/s13233-020-8028-x-
dc.identifier.kciidART002567726-
dc.contributor.localauthorIm, Sung Gap-
dc.contributor.nonIdAuthorKim, Yong Tae-
dc.contributor.nonIdAuthorLee, Seok Jae-
dc.contributor.nonIdAuthorLee, Kyoung G.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthornucleic acid extraction-
dc.subject.keywordAuthorpositively-charged polymers-
dc.subject.keywordAuthormicrofluidics-
dc.subject.keywordAuthorinitiated chemical vapor deposition (iCVD)-
dc.subject.keywordAuthorpathogen detection-
dc.subject.keywordPlusMOLECULAR DIAGNOSTICS-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusPURIFICATION-
dc.subject.keywordPlusCHITOSAN-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusSYSTEM-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 24 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0