Direct Visualization of Lithium Polysulfides and Their Suppression in Liquid Electrolyte

Cited 23 time in webofscience Cited 18 time in scopus
  • Hit : 322
  • Download : 0
Understanding of lithium polysulfide (Li-PS) formation and the shuttle phenomenon is essential for practical application of the lithium/sulfur (Li/S) cell, which has superior theoretical specific energy (2600 Wh/kg). However, it suffers from the lack of direct observation on behaviors of soluble Li-PS in liquid electrolytes. Using in situ graphene liquid cell electron microscopy, we have visualized formation and diffusion of Li-PS simultaneous with morphological and phase evolutions of sulfur nanoparticles during lithiation. We found that the morphological changes and Li-PS diffusion are retarded by ionic liquid (IL) addition into electrolyte. Chronoamperometric shuttle current measurement confirms that IL addition lowers the experimental diffusion coefficient of Li-PS by 2 orders of magnitude relative to that in IL-free electrolyte and thus suppresses the Li-PS shuttle current, which accounts for better cyclability and Coulombic efficiency of the Li/S cell. This study provides significant insights into electrolyte design to inhibit the polysulfide shuttle phenomenon.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-03
Language
English
Article Type
Article
Citation

NANO LETTERS, v.20, no.3, pp.2080 - 2086

ISSN
1530-6984
DOI
10.1021/acs.nanolett.0c00058
URI
http://hdl.handle.net/10203/274150
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 23 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0