One step infiltration induced multi-cation oxide nanocatalyst for load proof SOFC application

Cited 41 time in webofscience Cited 18 time in scopus
  • Hit : 366
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorNamgung, Yeonko
dc.contributor.authorHong, Jaewoonko
dc.contributor.authorKumar, Aniketko
dc.contributor.authorLim, Dae-Kwangko
dc.contributor.authorSong, Sun-Juko
dc.date.accessioned2020-03-31T07:20:04Z-
dc.date.available2020-03-31T07:20:04Z-
dc.date.created2020-03-30-
dc.date.created2020-03-30-
dc.date.issued2020-06-
dc.identifier.citationAPPLIED CATALYSIS B-ENVIRONMENTAL, v.267-
dc.identifier.issn0926-3373-
dc.identifier.urihttp://hdl.handle.net/10203/273738-
dc.description.abstractDecreasing the operating temperature leads to an issue of high polarization that results in slow electrode kinetics. Infiltration of multi-cation oxide nanoparticle catalyst layer over the cathode backbone can provide low activation energy in catalyzing several electrochemical processes. The adoption of cetrimonium bromide(CTAB)-amino acid (glycine) route can become an efficient route to infiltrate particle with proper stoichiometry due to three-dimensional network forming nature owing to the zwitterionic form of the amino acid. Herein, we report a novel route for the development of discrete Sm0.5Sr0.5CoO3.delta(SSC) nanoparticles on the cathode backbone. In particular, the full cell shows enhancement in electrochemical property with a power density of 1.57 W cm(-2 )at 700 degrees C and 100 h durability test under 1 A cm(-2). These observations indicate that the selection of the CTAB-amino acid route for the infiltration process of SSC nanoparticle on the surface La0.6Sr0.4Co0.2Fe0.8O3.delta(LSCF6428) backbone is a significant step towards electrochemically viable SOFC performance improvement.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleOne step infiltration induced multi-cation oxide nanocatalyst for load proof SOFC application-
dc.typeArticle-
dc.identifier.wosid000518865300052-
dc.identifier.scopusid2-s2.0-85075506620-
dc.type.rimsART-
dc.citation.volume267-
dc.citation.publicationnameAPPLIED CATALYSIS B-ENVIRONMENTAL-
dc.identifier.doi10.1016/j.apcatb.2019.118374-
dc.contributor.nonIdAuthorNamgung, Yeon-
dc.contributor.nonIdAuthorHong, Jaewoon-
dc.contributor.nonIdAuthorKumar, Aniket-
dc.contributor.nonIdAuthorSong, Sun-Ju-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorNanocatalyst-
dc.subject.keywordAuthorOxygen reduction reaction-
dc.subject.keywordAuthorCathode modification-
dc.subject.keywordAuthorInfiltration-
dc.subject.keywordAuthorSolid oxide fuel cells-
dc.subject.keywordPlusOXYGEN-REDUCTION REACTION-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusSPATIAL-DISTRIBUTION-
dc.subject.keywordPlusPOTENTIAL GRADIENTS-
dc.subject.keywordPlusPOWER-DENSITY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusPEROVSKITE-
dc.subject.keywordPlusSTABILITY-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 41 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0