Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells

Cited 35 time in webofscience Cited 36 time in scopus
  • Hit : 172
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Kang Taekko
dc.contributor.authorYoon, Hee Sungko
dc.contributor.authorAhn, Jin Sooko
dc.contributor.authorWachsman, Eric D.ko
dc.date.accessioned2020-03-19T04:20:04Z-
dc.date.available2020-03-19T04:20:04Z-
dc.date.created2020-03-02-
dc.date.created2020-03-02-
dc.date.issued2012-07-
dc.identifier.citationJOURNAL OF MATERIALS CHEMISTRY, v.22, no.33, pp.17113 - 17120-
dc.identifier.issn0959-9428-
dc.identifier.urihttp://hdl.handle.net/10203/272972-
dc.description.abstractHere we demonstrated a simple low-cost approach to dramatically increase the power density of solid oxide fuel cells (SOFCs) using an improved anode functional layer (AFL) structure. By infiltrating a very small amount (similar to 2 wt%) of Ni and Gd0.1Ce0.9O1.95(GDC) precursor solution into a submicron-sized, colloidally deposited AFL, a high power density cost-effective bimodally integrated AFL (BI-AFL) was produced. Microstructural analysis of this BI-AFL revealed that the superimposed ultra-fine features surrounding a submicron Ni-GDC particulate structure remained even after high temperature sintering. Applying this BI-AFL on an anode-supported SOFC yielded a maximum power density (MPD) of similar to 1.2 W cm(-2) at 600 degrees C, a similar to 3x increase compared to SOFC without an AFL. Electrochemical impedance results showed a striking decrease in both ohmic and non-ohmic electrode area specific resistances (ASR) compared to SOFCs with either no AFL or a conventional AFL. The effect of the BI-AFL structure on improving SOFC performance was even greater at lower temperature. These results indicate that a network structure with bimodal particle size distribution in the AFL dramatically increased triple phase boundary (TPB) length and enhanced the interfacial contact between anode and electrolyte.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleBimodally integrated anode functional layer for lower temperature solid oxide fuel cells-
dc.typeArticle-
dc.identifier.wosid000306972900059-
dc.identifier.scopusid2-s2.0-84865506717-
dc.type.rimsART-
dc.citation.volume22-
dc.citation.issue33-
dc.citation.beginningpage17113-
dc.citation.endingpage17120-
dc.citation.publicationnameJOURNAL OF MATERIALS CHEMISTRY-
dc.identifier.doi10.1039/c2jm34465c-
dc.contributor.localauthorLee, Kang Taek-
dc.contributor.nonIdAuthorYoon, Hee Sung-
dc.contributor.nonIdAuthorAhn, Jin Soo-
dc.contributor.nonIdAuthorWachsman, Eric D.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSOFC-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusCATHODES-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 35 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0