Suppressing Interfacial Dipoles to Minimize Open-Circuit Voltage Loss in Quantum Dot Photovoltaics

Cited 14 time in webofscience Cited 11 time in scopus
  • Hit : 337
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLim, Hunheeko
dc.contributor.authorKim, Donghunko
dc.contributor.authorChoi, Min-Jaeko
dc.contributor.authorSargent, Edward H.ko
dc.contributor.authorJung, Yeon Sikko
dc.contributor.authorKim, Jin Youngko
dc.date.accessioned2020-03-19T02:24:10Z-
dc.date.available2020-03-19T02:24:10Z-
dc.date.created2019-11-18-
dc.date.issued2019-12-
dc.identifier.citationADVANCED ENERGY MATERIALS, v.9, no.48, pp.1901938-
dc.identifier.issn1614-6832-
dc.identifier.urihttp://hdl.handle.net/10203/272628-
dc.description.abstractQuantum-dot (QD) photovoltaics (PVs) offer promise as energy-conversion devices; however, their open-circuit-voltage (V-OC) deficit is excessively large. Previous work has identified factors related to the QD active layer that contribute to V-OC loss, including sub-bandgap trap states and polydispersity in QD films. This work focuses instead on layer interfaces, and reveals a critical source of V-OC loss: electron leakage at the QD/hole-transport layer (HTL) interface. Although large-bandgap organic materials in HTL are potentially suited to minimizing leakage current, dipoles that form at an organic/metal interface impede control over optimal band alignments. To overcome the challenge, a bilayer HTL configuration, which consists of semiconducting alpha-sexithiophene (alpha-6T) and metallic poly(3,4-ethylenedioxythiphene) polystyrene sulfonate (PEDOT:PSS), is introduced. The introduction of the PEDOT:PSS layer between alpha-6T and Au electrode suppresses the formation of undesired interfacial dipoles and a Schottky barrier for holes, and the bilayer HTL provides a high electron barrier of 1.35 eV. Using bilayer HTLs enhances the V-OC by 74 mV without compromising the J(SC) compared to conventional MoO3 control devices, leading to a best power conversion efficiency of 9.2% (>40% improvement relative to relevant controls). Wider applicability of the bilayer strategy is demonstrated by a similar structure based on shallow lowest-unoccupied-molecular-orbital (LUMO) levels.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleSuppressing Interfacial Dipoles to Minimize Open-Circuit Voltage Loss in Quantum Dot Photovoltaics-
dc.typeArticle-
dc.identifier.wosid000493157200001-
dc.identifier.scopusid2-s2.0-85074603899-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue48-
dc.citation.beginningpage1901938-
dc.citation.publicationnameADVANCED ENERGY MATERIALS-
dc.identifier.doi10.1002/aenm.201901938-
dc.contributor.localauthorJung, Yeon Sik-
dc.contributor.nonIdAuthorKim, Donghun-
dc.contributor.nonIdAuthorChoi, Min-Jae-
dc.contributor.nonIdAuthorSargent, Edward H.-
dc.contributor.nonIdAuthorKim, Jin Young-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorband engineering-
dc.subject.keywordAuthorhole transport layers-
dc.subject.keywordAuthorinterfacial dipole-
dc.subject.keywordAuthorquantum dot solar cells-
dc.subject.keywordPlusENERGY-LEVEL ALIGNMENT-
dc.subject.keywordPlusSUB-BANDGAP STATES-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusHOLE-EXTRACTION-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusCARRIER MOBILITY-
dc.subject.keywordPlusCHARGE-TRANSPORT-
dc.subject.keywordPlusMETAL-OXIDE-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusPOLYMER-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0