Periodic minimal surfaces embedded in R-3 derived from the singly periodic Scherk minimal surface

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 208
  • Download : 46
DC FieldValueLanguage
dc.contributor.authorMorabito, Filippoko
dc.date.accessioned2020-03-19T02:20:05Z-
dc.date.available2020-03-19T02:20:05Z-
dc.date.created2020-03-17-
dc.date.created2020-03-17-
dc.date.created2020-03-17-
dc.date.issued2020-02-
dc.identifier.citationCOMMUNICATIONS IN CONTEMPORARY MATHEMATICS, v.22, no.1, pp.1850075-
dc.identifier.issn0219-1997-
dc.identifier.urihttp://hdl.handle.net/10203/272572-
dc.description.abstractWe construct three kinds of periodic minimal surfaces embedded in R-3. We show the existence of a 1-parameter family of minimal surfaces invariant under the action of a translation by 2 pi, which seen from a distance look like m equidistant parallel planes intersecting orthogonally k equidistant parallel planes, m, k is an element of N, mk >= 2. We also consider the case where the surfaces are asymptotic to m is an element of N+ equidistant parallel planes intersecting orthogonally infinitely many equidistant parallel planes. In this case, the minimal surfaces are doubly periodic, precisely they are invariant under the action of two orthogonal translations. Last we construct triply periodic minimal surfaces which are invariant under the action of three orthogonal translations in the case of two stacks of infinitely many equidistant parallel planes which intersect orthogonally.-
dc.languageEnglish-
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD-
dc.titlePeriodic minimal surfaces embedded in R-3 derived from the singly periodic Scherk minimal surface-
dc.typeArticle-
dc.identifier.wosid000515152800002-
dc.identifier.scopusid2-s2.0-85058306879-
dc.type.rimsART-
dc.citation.volume22-
dc.citation.issue1-
dc.citation.beginningpage1850075-
dc.citation.publicationnameCOMMUNICATIONS IN CONTEMPORARY MATHEMATICS-
dc.identifier.doi10.1142/S021919971850075X-
dc.contributor.localauthorMorabito, Filippo-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPeriodic minimal surfaces-
dc.subject.keywordAuthorgluing procedure-
dc.subject.keywordAuthorfixed point theorem-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0