Fingerprint Voltammograms of Copper Single Crystals under Alkaline Conditions: A Fundamental Mechanistic Analysis

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 142
  • Download : 0
A critical step toward the systematic development of electrocatalysts is the determination of the microscopic structure and processes at the electrified solid/electrolyte interface. The major challenges toward this end for experiment and computations are achieving sufficient cleanliness and modeling the complexity of electrochemical systems, respectively. In this sense, benchmarks of well-defined model systems are sparse. This work presents a rigorous joint experimental-theoretical study on the single-crystal (SC) Cu/aqueous interface. Within typical computational uncertainties, we find quantitative agreement between simulated and experimentally measured voltammograms, which allows us to unequivocally identify the *OH adsorption feature in the fingerprint region of Cu(110), Cu(100), and Cu(111) SCs under alkaline conditions. We find the inclusion of hydrogen evolution reaction kinetics in the theoretical model to be crucial for an accurate steady-state description that gives rise to a negligible H* coverage. A purely thermodynamic description of the H* coverage through a Pourbaix analysis would incorrectly lead to a H* adsorption peak. The presented results establish a fundamental benchmark for all electrochemical applications of Cu.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-02
Language
English
Article Type
Article
Citation

JOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.11, no.4, pp.1450 - 1455

ISSN
1948-7185
DOI
10.1021/acs.jpclett.9b03728
URI
http://hdl.handle.net/10203/272371
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0