Thin-film composite hollow fibre membrane for low pressure organic solvent nanofiltration

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 110
  • Download : 0
Polyamide thin film membranes have shown outstanding performance in organic solvent nanofiltration (OSN). However, it is still challenging to produce polyamide hollow fibres for OSN, mainly due to limited solvent resistance of hollow fibre substrates and the difficulty to synthesize polyamide thin film on the surface of hollow fibre substrates. In this study, polyamide-based hollow fibre composite members for low pressure OSN were successfully developed. Solvent resistant polyimide hollow fibre substrates were first prepared through a nonsolvent induced phase separation process, followed by chemical cross-linking with hexamethylene diamine. A polyamide thin film layer was then synthesized via interfacial polymerization, by circulating the reactant monomers including polyethyleneimine (PEI), piperazine (PIP) and trimesoyl chloride (TMC) through the hollow fibre lumen. The polyamide thin film with a thickness of similar to 60 nm was formed on the inner surface of the hollow fibre substrates. The membranes exhibited excellent nanofiltration (NF) performance under 2 bar operating pressure. The permeability of water, acetone and isopropanol was 6.8, 11.6 and 4.51 m(-2) h(-1) bar(-1), respectively. The membranes also achieved 99.9% and 91.8% rejection to rose bengal (1017 Da) and acid fuchsin (585 Da), respectively, in acetone. Furthermore, a 72-h filtration test was conducted and the membrane showed steady performance throughout the testing period. This study demonstrates the possibility of fabricating polyamide hollow fibre membranes for organic solvent nanofiltration at low pressure, which is desirable for practical applications.
Publisher
ELSEVIER
Issue Date
2020-03
Language
English
Article Type
Article
Citation

JOURNAL OF MEMBRANE SCIENCE, v.597, pp.117760

ISSN
0376-7388
DOI
10.1016/j.memsci.2019.117760
URI
http://hdl.handle.net/10203/272357
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0