Dynamic modelling of local fuel inventory and desorption in the whole tokamak vacuum vessel for auto-consistent plasma-wall interaction simulations

Cited 10 time in webofscience Cited 9 time in scopus
  • Hit : 219
  • Download : 102
DC FieldValueLanguage
dc.contributor.authorDenis, J.ko
dc.contributor.authorJeong, C.ko
dc.contributor.authorKwak, Sehyunko
dc.date.accessioned2020-01-23T02:20:03Z-
dc.date.available2020-01-23T02:20:03Z-
dc.date.created2020-01-23-
dc.date.created2020-01-23-
dc.date.created2020-01-23-
dc.date.issued2019-05-
dc.identifier.citationNUCLEAR MATERIALS AND ENERGY, v.19, pp.550 - 557-
dc.identifier.issn2352-1791-
dc.identifier.urihttp://hdl.handle.net/10203/271764-
dc.description.abstractAn extension of the SolEdge2D-EIRENE code package, named D-WEE, has been developed to add the dynamics of thermal desorption of hydrogen isotopes from the surface of plasma facing materials. To achieve this purpose, D-WEE models hydrogen isotopes implantation, transport and retention in those materials. Before launching autoconsistent simulation (with feedback of D-WEE on SolEdge2D-EIRENE), D-WEE has to be initialised to ensure a realistic wall behaviour in terms of dynamics (pumping or fuelling areas) and fuel content. A methodology based on modelling is introduced to perform such initialisation. A synthetic plasma pulse is built from consecutive SolEdge2D-EIRENE simulations. This synthetic pulse is used as a plasma background for the D-WEE module. A sequence of plasma pulses is simulated with D-WEE to model a tokamak operation. This simulation enables to extract at a desired time during a pulse the local fuel inventory and the local desorption flux density which could be used as initial condition for coupled plasma-wall simulations. To assess the relevance of the dynamic retention behaviour obtained in the simulation, a confrontation to post-pulse experimental pressure measurement is performed. Such confrontation reveals a qualitative agreement between the temporal pressure drop obtained in the simulation and the one observed experimentally. The simulated dynamic retention during the consecutive pulses is also studied.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleDynamic modelling of local fuel inventory and desorption in the whole tokamak vacuum vessel for auto-consistent plasma-wall interaction simulations-
dc.typeArticle-
dc.identifier.wosid000470746100086-
dc.identifier.scopusid2-s2.0-85066471831-
dc.type.rimsART-
dc.citation.volume19-
dc.citation.beginningpage550-
dc.citation.endingpage557-
dc.citation.publicationnameNUCLEAR MATERIALS AND ENERGY-
dc.identifier.doi10.1016/j.nme.2019.03.019-
dc.contributor.nonIdAuthorDenis, J.-
dc.contributor.nonIdAuthorJeong, C.-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPlasma-wall interaction simulation-
dc.subject.keywordAuthorRecycling-
dc.subject.keywordAuthorDynamics of hydrogen isotopes thermal desorption-
dc.subject.keywordAuthorDynamic retention-
dc.subject.keywordAuthorEdge plasma physics-
dc.subject.keywordPlusRETENTION-
dc.subject.keywordPlusTUNGSTEN-
dc.subject.keywordPlusRELEASE-
dc.subject.keywordPlusBERYLLIUM-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusJET-
Appears in Collection
Files in This Item
1-s2.0-S235217911830262X-main.pdf(3.24 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0