Capillary Origami with Atomically Thin Membranes

Cited 33 time in webofscience Cited 25 time in scopus
  • Hit : 579
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorReynolds, Michael F.ko
dc.contributor.authorMcGill, Kathryn L.ko
dc.contributor.authorWang, Maritha A.ko
dc.contributor.authorGao, Huiko
dc.contributor.authorMujid, Fauziako
dc.contributor.authorKang, Kibumko
dc.contributor.authorPark, Jiwoongko
dc.contributor.authorMiskin, Marc Z.ko
dc.contributor.authorCohen, Itaiko
dc.contributor.authorMcEuen, Paul L.ko
dc.date.accessioned2019-10-10T07:30:09Z-
dc.date.available2019-10-10T07:30:09Z-
dc.date.created2019-10-07-
dc.date.created2019-10-07-
dc.date.issued2019-09-
dc.identifier.citationNANO LETTERS, v.19, no.9, pp.6221 - 6226-
dc.identifier.issn1530-6984-
dc.identifier.urihttp://hdl.handle.net/10203/267892-
dc.description.abstractSmall-scale optical and mechanical components and machines require control over three-dimensional structure at the microscale. Inspired by the analogy between paper and two-dimensional materials, origami-style folding of atomically thin materials offers a promising approach for making microscale structures from the thinnest possible sheets. In this Letter, we show that a monolayer of molybdenum disulfide (MoS2) can be folded into three-dimensional shapes by a technique called capillary origami, in which the surface tension of a droplet drives the folding of a thin sheet. We define shape nets by patterning rigid metal panels connected by MoS2 hinges, allowing us to fold micron-scale polyhedrons. Finally, we demonstrate that these shapes can be folded in parallel without the use of micropipettes or microfluidics by means of a microemulsion of droplets that dissolves into the bulk solution to drive folding. These results demonstrate controllable folding of the thinnest possible materials using capillary origami and indicate a route forward for design and parallel fabrication of more complex three-dimensional micron-scale structures and machines.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleCapillary Origami with Atomically Thin Membranes-
dc.typeArticle-
dc.identifier.wosid000486361900050-
dc.identifier.scopusid2-s2.0-85072133171-
dc.type.rimsART-
dc.citation.volume19-
dc.citation.issue9-
dc.citation.beginningpage6221-
dc.citation.endingpage6226-
dc.citation.publicationnameNANO LETTERS-
dc.identifier.doi10.1021/acs.nanolett.9b02281-
dc.contributor.localauthorKang, Kibum-
dc.contributor.nonIdAuthorReynolds, Michael F.-
dc.contributor.nonIdAuthorMcGill, Kathryn L.-
dc.contributor.nonIdAuthorWang, Maritha A.-
dc.contributor.nonIdAuthorGao, Hui-
dc.contributor.nonIdAuthorMujid, Fauzia-
dc.contributor.nonIdAuthorPark, Jiwoong-
dc.contributor.nonIdAuthorMiskin, Marc Z.-
dc.contributor.nonIdAuthorCohen, Itai-
dc.contributor.nonIdAuthorMcEuen, Paul L.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthor2D materials-
dc.subject.keywordAuthororigami-
dc.subject.keywordAuthorcapillary-
dc.subject.keywordAuthormicrostructures-
dc.subject.keywordAuthorMoS2-
dc.subject.keywordPlusQUALITY CARBON NANOSCROLLS-
dc.subject.keywordPlusMONOLAYER MOS2-
dc.subject.keywordPlusENCAPSULATION-
dc.subject.keywordPlusDELIVERY-
dc.subject.keywordPlusBREAKING-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 33 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0