Tin oxide evolution by heat-treatment with tin-aminoclay (SnAC) under argon condition for lithium-ion battery (LIB) anode applications

Cited 21 time in webofscience Cited 18 time in scopus
  • Hit : 327
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorMun, Yoo Seokko
dc.contributor.authorYet Nhung Phamko
dc.contributor.authorVu Khac Hoang Buiko
dc.contributor.authorTanaji, Salunkhe Tejaswiko
dc.contributor.authorLee, Hyun Ukko
dc.contributor.authorLee, Go-Woonko
dc.contributor.authorChoi, Jin Seokko
dc.contributor.authorKim, Il Taeko
dc.contributor.authorLee, Young-Chulko
dc.date.accessioned2019-10-08T06:20:24Z-
dc.date.available2019-10-08T06:20:24Z-
dc.date.created2019-10-07-
dc.date.issued2019-10-
dc.identifier.citationJOURNAL OF POWER SOURCES, v.437-
dc.identifier.issn0378-7753-
dc.identifier.urihttp://hdl.handle.net/10203/267826-
dc.description.abstractA layered tin-aminoclay structure of high specific surface area and offering great mechanical resistance to stretching is used as an improved anode for lithium-ion battery application. The active nanoparticles (Sn/SnO/SnO2 nanoparticles) are evolved by a heat-treatment process through direct conversion of Sn species within tin-aminoclay structure. Besides, this heat treatment process facilitates removal of oxygen functionalities and homogenization of the tin-aminoclay surface, and also provides great synergistic effects, all leading to improved theoretical specific capacity and electrochemical performance in lithium-ion battery applications. Thus, tin-aminoclay heat-treated at 500 degrees C under the argon condition is considered to be a most promising candidate anode material one that can deliver a highest initial discharge capacity value of 1,400 mAh g(-1), good stability after 95 repeated cycles, and a high reversible capacity of about 500 mAh g(-1) at a current density of 100 mA g(-1).-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleTin oxide evolution by heat-treatment with tin-aminoclay (SnAC) under argon condition for lithium-ion battery (LIB) anode applications-
dc.typeArticle-
dc.identifier.wosid000486355400008-
dc.identifier.scopusid2-s2.0-85069858826-
dc.type.rimsART-
dc.citation.volume437-
dc.citation.publicationnameJOURNAL OF POWER SOURCES-
dc.identifier.doi10.1016/j.jpowsour.2019.226946-
dc.contributor.localauthorChoi, Jin Seok-
dc.contributor.nonIdAuthorMun, Yoo Seok-
dc.contributor.nonIdAuthorYet Nhung Pham-
dc.contributor.nonIdAuthorVu Khac Hoang Bui-
dc.contributor.nonIdAuthorTanaji, Salunkhe Tejaswi-
dc.contributor.nonIdAuthorLee, Hyun Uk-
dc.contributor.nonIdAuthorLee, Go-Woon-
dc.contributor.nonIdAuthorKim, Il Tae-
dc.contributor.nonIdAuthorLee, Young-Chul-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSn-aminoclay (SnAC)-
dc.subject.keywordAuthorSn/SnO/SnO2 nanoparticles-
dc.subject.keywordAuthorMetal (oxide) evolution-
dc.subject.keywordAuthorAnode-
dc.subject.keywordAuthorLithium-ion battery (LIB)-
dc.subject.keywordPlusELECTROMAGNETIC-WAVE ABSORBERS-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusSNO-
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0