Two-Qubit Pure Entanglement as Optimal Social Welfare Resource in Bayesian Game

Cited 11 time in webofscience Cited 6 time in scopus
  • Hit : 234
  • Download : 0
Entanglement is of paramount importance in quantum information theory. Its supremacy over classical correlations has been demonstrated in a numerous information theoretic protocols. Here we study possible adequacy of quantum entanglement in Bayesian game theory, particularly in social welfare solution (SWS), a strategy which the players follow to maximize sum of their payoffs. Given a multi-partite quantum state as an advice, players can come up with several correlated strategies by performing local measurements on their parts of the quantum state. A quantum strategy is called quantum-SWS if it is advantageous over a classical equilibrium (CE) strategy in the sense that none of the players has to sacrifice their CE-payoff rather some have incentive and at the same time it maximizes sum of all players' payo ff s over all possible quantum advantageous strategies. Quantum state yielding such a quantum-SWS is called a quantum social welfare advice (SWA). We show that any two-qubit pure entangled state, even if it is arbitrarily close to a product state, can serve as quantum-SWA in some Bayesian game. Our result, thus, gives cognizance to the fact that every two-qubit pure entanglement is the best resource for some operational task.
Publisher
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
Issue Date
2019-08
Language
English
Article Type
Article
Citation

Quantum, v.3

ISSN
2521-327X
DOI
10.22331/q-2019-09-09-185
URI
http://hdl.handle.net/10203/267727
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0