Monte-Carlo Tree Search for Constrained POMDPs

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 233
  • Download : 0
Monte-Carlo Tree Search (MCTS) has been successfully applied to very large POMDPs, a standard model for stochastic sequential decision-making problems. However, many real-world problems inherently have multiple goals, where multiobjective formulations are more natural. The constrained POMDP (CPOMDP) is such a model that maximizes the reward while constraining the cost, extending the standard POMDP model. To date, solution methods for CPOMDPs assume an explicit model of the environment, and thus are hardly applicable to large-scale realworld problems. In this paper, we present CC-POMCP (Cost-Constrained POMCP), an online MCTS algorithm for large CPOMDPs that leverages the optimization of LP-induced parameters and only requires a black-box simulator of the environment. In the experiments, we demonstrate that CC-POMCP converges to the optimal stochastic action selection in CPOMDP and pushes the state-of-the-art by being able to scale to very large problems.
Publisher
Neural Information Processing Systems
Issue Date
2018-12-06
Language
English
Citation

32nd Conference on Neural Information Processing Systems (NIPS 2018)

URI
http://hdl.handle.net/10203/251740
Appears in Collection
RIMS Conference Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0