Gold-Titanium Dioxide Half-Dome Heterostructures for Plasmonic Hydrogen Evolution

Cited 14 time in webofscience Cited 10 time in scopus
  • Hit : 390
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Shinyoungko
dc.contributor.authorNam, Yoon Sungko
dc.date.accessioned2019-03-19T01:27:38Z-
dc.date.available2019-03-19T01:27:38Z-
dc.date.created2019-03-04-
dc.date.created2019-03-04-
dc.date.created2019-03-04-
dc.date.created2019-03-04-
dc.date.issued2018-10-
dc.identifier.citationACS APPLIED ENERGY MATERIALS, v.1, no.10, pp.5169 - 5175-
dc.identifier.issn2574-0962-
dc.identifier.urihttp://hdl.handle.net/10203/251661-
dc.description.abstractPlasmonic water splitting gains increasing attention due to their broad absorption spectra and excellent chemical stability. However, plasmonic water splitting suffers from low efficiency due to difficulties of utilizing plasmonic energetic charge carriers. Structural factors need to be carefully examined to overcome the short lifetime of plasmonic hot carriers. Here we investigate Au/TiO2 half-dome patterns as a plasmonic photoelectrode to examine the effects of incident light angle and orientation of nanostructures on photochemical hydrogen evolution. Half-dome structures exhibit 4- and 3-fold higher photocurrent density and photovoltage, respectively, than a flat thin film. The enhanced photoreactivity is ascribed to the increased angle between the Au/TiO2 interface and the electric field of irradiated light. The result indicates that the kinetic momentum of the incident photon can significantly contribute to hot electron injection and reaction rate. The monolithic Au/TiO2/Pt half-dome structures are also constructed to show sustainable hydrogen evolution without external bias under visible light illumination.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleGold-Titanium Dioxide Half-Dome Heterostructures for Plasmonic Hydrogen Evolution-
dc.typeArticle-
dc.identifier.wosid000458706600010-
dc.identifier.scopusid2-s2.0-85064745141-
dc.type.rimsART-
dc.citation.volume1-
dc.citation.issue10-
dc.citation.beginningpage5169-
dc.citation.endingpage5175-
dc.citation.publicationnameACS APPLIED ENERGY MATERIALS-
dc.identifier.doi10.1021/acsaem.7b00262-
dc.contributor.localauthorNam, Yoon Sung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorhydrogen evolution-
dc.subject.keywordAuthorplasmonic-
dc.subject.keywordAuthorgold nanostructure-
dc.subject.keywordAuthortitanium oxide-
dc.subject.keywordAuthorheterostructure-
dc.subject.keywordPlusHOT-ELECTRON DYNAMICS-
dc.subject.keywordPlusSURFACE-PLASMON-
dc.subject.keywordPlusVISIBLE-LIGHT-
dc.subject.keywordPlusCHARGE-CARRIERS-
dc.subject.keywordPlusENERGY-TRANSFER-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusNANORODS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0