Multi-scale simulation of plasma generation and film deposition in a circular type DC magnetron sputtering system

Cited 29 time in webofscience Cited 0 time in scopus
  • Hit : 321
  • Download : 1
DC FieldValueLanguage
dc.contributor.authorKwon, UHko
dc.contributor.authorChoi, SHko
dc.contributor.authorPark, YHko
dc.contributor.authorLee, Won-Jongko
dc.date.accessioned2011-08-29T04:47:22Z-
dc.date.available2011-08-29T04:47:22Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2005-03-
dc.identifier.citationTHIN SOLID FILMS, v.475, no.1-2, pp.17 - 23-
dc.identifier.issn0040-6090-
dc.identifier.urihttp://hdl.handle.net/10203/24996-
dc.description.abstractWe present a computational study on the plasma generation and film deposition in a circular type DC magnetron sputtering system. Design optimization of a large-area magnetron sputtering system needs a precise multi-scale simulation considering a target erosion by magnetron plasma, a macrofilm deposition by collisional transport, and a micro-deposition topography by collisionless transport. Our multi-scale simulation consists of particle-in-cell and Monte Carlo collision method (PIC-MCC) magnetron plasma simulation and Monte Carlo macro/microfilm deposition simulation. Thompson energy distribution and cosine angular distribution are used for the kinetic energy distribution and for the angular flux distribution of the sputtered atoms, respectively. A variable hard sphere (VHS) model is used to calculate the collision cross section of sputtered atoms and an equi-volume rate model (EVRM) is used to represent evolving film surface. The target erosion profiles are expected from the ion current density distribution on the sputter target simulated by two-dimensional PIC-MCC magnetron plasma simulator, and these profiles are compared with the experimental results. We present a discussion about the optimum detection range for the quasi-steady state of magnetron plasma in PIC-MCC simulation. Macro/microfilm deposition simulator predicts the macrofilm uniformity over the wafer and the micro-deposition topography in the micro-holes. Finally, we present a new algorithm, which can generate an asymmetric angular flux distribution, based on Monte Carlo method for microfilm deposition simulation. (C) 2004 Elsevier B.V. All rights reserved.-
dc.description.sponsorshipThis study has been supported by Sunic System. The authors wish to thank Professor J.P. Verboncoeur and Mr. J. Hammel of the Plasma Theory and Simulation Group of U. C. Berkeley for their kind advice about the XOOPIC program.en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherELSEVIER SCIENCE SA-
dc.subjectDISCHARGE-
dc.subjectATOMS-
dc.titleMulti-scale simulation of plasma generation and film deposition in a circular type DC magnetron sputtering system-
dc.typeArticle-
dc.identifier.wosid000227268600005-
dc.identifier.scopusid2-s2.0-13444267561-
dc.type.rimsART-
dc.citation.volume475-
dc.citation.issue1-2-
dc.citation.beginningpage17-
dc.citation.endingpage23-
dc.citation.publicationnameTHIN SOLID FILMS-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorLee, Won-Jong-
dc.contributor.nonIdAuthorKwon, UH-
dc.contributor.nonIdAuthorChoi, SH-
dc.contributor.nonIdAuthorPark, YH-
dc.type.journalArticleArticle; Proceedings Paper-
dc.subject.keywordAuthorcomputer simulation-
dc.subject.keywordAuthorparticle-in-cell-
dc.subject.keywordAuthorMonte Carlo collision-
dc.subject.keywordAuthorplasma processing and deposition-
dc.subject.keywordAuthorsputtering-
dc.subject.keywordPlusDISCHARGE-
dc.subject.keywordPlusATOMS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 29 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0