Precipitation-Based Nanoscale Enzyme Reactor with Improved Loading, Stability, and Mass Transfer for Enzymatic CO2 Conversion and Utilization

Cited 35 time in webofscience Cited 24 time in scopus
  • Hit : 163
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Han Solko
dc.contributor.authorHong, Sung-Gilko
dc.contributor.authorWoo, Kie Moonko
dc.contributor.authorTeijeiro Seijas, Vanesako
dc.contributor.authorKim, Seongbeenko
dc.contributor.authorLee, Jinwooko
dc.contributor.authorKim, Jungbaeko
dc.date.accessioned2019-01-22T08:37:45Z-
dc.date.available2019-01-22T08:37:45Z-
dc.date.created2018-12-05-
dc.date.created2018-12-05-
dc.date.created2018-12-05-
dc.date.issued2018-07-
dc.identifier.citationACS CATALYSIS, v.8, no.7, pp.6526 - 6536-
dc.identifier.issn2155-5435-
dc.identifier.urihttp://hdl.handle.net/10203/249049-
dc.description.abstractEnzymatic CO2 conversion has gathered a growing attention due to its fast kinetics in converting CO2 to bicarbonate, but the carbonic anhydrase enzymes easily lose their activities in CO2 conversion processes. Here, we propose a "precipitation based nanoscale enzyme reactor (p-NER)" approach, which stabilizes the activity of carbonic anhydrase, prepared via the two steps of enzyme adsorption into magnetic mesoporous silica and simultaneous enzyme precipitation/cross-linking. The simple addition of enzyme precipitation during cross-linking step resulted in the formation of cross-linked enzyme aggregates (CLEAs) not only inside the mesopores but also on the surface of mesoporous silica. External CLEAs of p-NER contributed to the improvement of enzyme loading (32.9% (w/w)) and mass transfer (K-M = 3.68 mM) compared to those of NER (20.1% (w/w) and 4.29 mM, respectively), prepared without enzyme precipitation step and showing no external CLEAs. p-NER was stable under vigorous shaking (200 rpm) with no activity decrease for 160 days after the inactivation of 25% labile enzyme population at the initial stage of incubation. It suggests that external CLEAs were tightly bound on the surface of mesoporous silica by having roots of CLEAs in the internal mesopores. p-NER of carbonic anhydrase was used to convert CO2 to bicarbonate, and the resulting bicarbonate was further utilized for the generation of calcium carbonate. The addition of p-NER into the CO2 bubbling reactor resulted in 6.5-fold higher production of calcium carbonate than the control with no enzyme, revealing the accelerated kinetics of CO2 conversion in the presence of p-NER. p-NER can be easily recycled via magnetic separation, and retained 89% of initial activity after 10 recycled uses. This study has demonstrated great potential of p-NER not only for enzymatic CO2 conversion but also in various other applications where the short lifetimes of enzymes hamper their practical applications.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titlePrecipitation-Based Nanoscale Enzyme Reactor with Improved Loading, Stability, and Mass Transfer for Enzymatic CO2 Conversion and Utilization-
dc.typeArticle-
dc.identifier.wosid000438475100089-
dc.identifier.scopusid2-s2.0-85049679486-
dc.type.rimsART-
dc.citation.volume8-
dc.citation.issue7-
dc.citation.beginningpage6526-
dc.citation.endingpage6536-
dc.citation.publicationnameACS CATALYSIS-
dc.identifier.doi10.1021/acscatal.8b00606-
dc.contributor.localauthorLee, Jinwoo-
dc.contributor.nonIdAuthorKim, Han Sol-
dc.contributor.nonIdAuthorHong, Sung-Gil-
dc.contributor.nonIdAuthorWoo, Kie Moon-
dc.contributor.nonIdAuthorTeijeiro Seijas, Vanesa-
dc.contributor.nonIdAuthorKim, Seongbeen-
dc.contributor.nonIdAuthorKim, Jungbae-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCarbonic anhydrase-
dc.subject.keywordAuthorPrecipitation-based nanoscale enzyme reactor-
dc.subject.keywordAuthorCO2 conversion-
dc.subject.keywordAuthorCO2 utilization-
dc.subject.keywordAuthorCalcium carbonate-
dc.subject.keywordPlusCARBONIC-ANHYDRASE-
dc.subject.keywordPlusMESOPOROUS SILICA-
dc.subject.keywordPlusPOTENTIAL APPLICATIONS-
dc.subject.keywordPlusPROTEIN-STRUCTURE-
dc.subject.keywordPlusFLUE-GAS-
dc.subject.keywordPlusIMMOBILIZATION-
dc.subject.keywordPlusDIOXIDE-
dc.subject.keywordPlusCAPTURE-
dc.subject.keywordPlusSEQUESTRATION-
dc.subject.keywordPlusSTABILIZATION-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 35 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0