Impact of Terminal End-Group of Acceptor-Donor-Acceptor-type Small Molecules on Molecular Packing and Photovoltaic Properties

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 336
  • Download : 0
In this study, we synthesized two acceptor-donor-acceptor (A-D-A)-type small molecules (SMs) (P3T4-VCN and P3T4-INCN) with different terminal end-groups (dicyanovinyl (VCN) and 2-methylene-3-(1,1-dicyanomethylene)indanone (INCN)) based on the 1,4-bis(thiophenylphenylthiophene)-2,5-difluorophenylene (P3T4) core that possesses high coplanarity because of intrachain noncovalent Coulombic interactions. We investigated the influence of terminal end-groups on intermolecular packing and the resulting electrical and photovoltaic characteristics. A small change in the end-group structure of the SMs induces a significant variation in the torsional structures, molecular packing, and pristine/blend film morphology. It is noteworthy that the less crystalline P3T4-INCN with tilted conformation is highly sensitive to post-treatments (i.e., additives and annealing) such that it permits facile morphological modulation. However, the highly planar and crystalline P3T4-VCN exhibits a strong tolerance toward processing treatments. After morphology optimization, the fullerene-based bulk-heterojunction solar cell of tilted P3T4-INCN exhibits a power conversion efficiency (PCE) of 5.68%, which is significantly superior to that of P3T4-VCN:PC71BM (PCE = 1.29%). Our results demonstrate the importance of the terminal end-group for the design of A-D-A-type SMs and their sensitivity toward the postprocessing treatments in optimizing their performance.
Publisher
AMER CHEMICAL SOC
Issue Date
2018-11
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.10, no.46, pp.39952 - 39961

ISSN
1944-8244
DOI
10.1021/acsami.8b13928
URI
http://hdl.handle.net/10203/248731
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0