Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution

Cited 132 time in webofscience Cited 0 time in scopus
  • Hit : 818
  • Download : 0
Developing active and stable electrocatalysts from Earth-abundant elements is the key to water splitting for hydrogen production through electrolysis. Here, we report a strategy to turn non-electrocatalytic Ti2CTx into an active electrocatalyst by the nitridation of two-dimensional (2D) titanium carbide MXene (Ti2CTx) nanosheets using sodium amide (NaNH2). The addition of NaNH2 results in the chemical bonding of Ti-Nx at 500 °C on the surface of Ti2CTx, which was designed as an efficient electrocatalytic material for the hydrogen evolution reaction (HER). When used as an electrocatalytic material for the HER, the nitrided-Ti2CTx (N-Ti2CTx) exhibited high activity with an overpotential of −215 mV vs. NHE for the hydrogen evolution reaction (HER) at 10 mA cm−2. These values are over three times smaller than those for pristine-Ti2CTx (−645 mV vs. NHE for the HER). The as-synthesized sample showed excellent durability under acidic (0.5 M H2SO4) conditions, indicating its robust catalytic activity towards the HER. The nitridation strategy implemented here could be extended to other 2D transition metal carbide electrocatalysts to improve their catalytic performance. © The Royal Society of Chemistry.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2018-11
Language
English
Article Type
Article
Citation

JOURNAL OF MATERIALS CHEMISTRY A, v.6, no.42, pp.20869 - 20877

ISSN
2050-7488
DOI
10.1039/C8TA08197B
URI
http://hdl.handle.net/10203/248708
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 132 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0