Direct Access to Hierarchically Porous Inorganic Oxide Materials with Three-Dimensionally Interconnected Networks

Cited 110 time in webofscience Cited 0 time in scopus
  • Hit : 108
  • Download : 0
Hierarchically porous oxide materials have immense potential for applications in catalysis, separation, and energy devices, but the synthesis of these materials is hampered by the need to use multiple templates and the associated complicated steps and uncontrollable mixing behavior. Here we report a simple one-pot strategy for the synthesis of inorganic oxide materials with multiscale porosity. The inorganic precursor and block copolymer are coassembled into an ordered mesostructure (microphase separation), while the in situ-polymerized organic precursor forms organic-rich macrodomains (macrophase separation) around which the mesostructure grows. Calcination generates hierarchical meso/macroporous SiO2 and TiO2 with three-dimensionally interconnected pore networks. The continuous 3D macrostructures were clearly visualized by nanoscale X-ray computed tomography. The resulting TiO2 was used as the anode in a lithium ion battery and showed excellent rate capability compared with mesoporous TiO2. This work is of particular importance because it (i) expands the base of BCP self-assembly from mesostructures to complex porous structures, (ii) shows that the interplay of micro- and macrophase separation can be fully exploited for the design of hierarchically porous inorganic materials, and therefore (iii) provides strategies for researchers in materials science and polymer science.
Publisher
AMER CHEMICAL SOC
Issue Date
2014-11
Language
English
Article Type
Article
Keywords

ONE-POT SYNTHESIS; CAPACITIVE ENERGY-STORAGE; SPINODAL DECOMPOSITION; MESOPOROUS SILICA; PHASE-SEPARATION; BLOCK-COPOLYMER; NANOCOMPOSITES; CARBON/SILICA; MESOSTRUCTURE; HOMOPOLYMER

Citation

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.136, no.45, pp.16066 - 16072

ISSN
0002-7863
DOI
10.1021/ja5091172
URI
http://hdl.handle.net/10203/245049
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 110 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0