General Synthesis of N-Doped Macroporous Graphene-Encapsulated Mesoporous Metal Oxides and Their Application as New Anode Materials for Sodium-Ion Hybrid Supercapacitors

Cited 126 time in webofscience Cited 0 time in scopus
  • Hit : 192
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Min Suko
dc.contributor.authorLim, Eunhoko
dc.contributor.authorKim, Seongbeenko
dc.contributor.authorJo, Changshinko
dc.contributor.authorChun, Jinyoungko
dc.contributor.authorLee, Jinwooko
dc.date.accessioned2018-08-20T08:09:11Z-
dc.date.available2018-08-20T08:09:11Z-
dc.date.created2018-08-10-
dc.date.created2018-08-10-
dc.date.created2018-08-10-
dc.date.issued2017-01-
dc.identifier.citationADVANCED FUNCTIONAL MATERIALS, v.27, no.3, pp.1603921-
dc.identifier.issn1616-301X-
dc.identifier.urihttp://hdl.handle.net/10203/245004-
dc.description.abstractA general method to synthesize mesoporous metal oxide@ N-doped macroporous graphene composite by heat-treatment of electrostatically co-assembled amine-functionalized mesoporous silica/metal oxide composite and graphene oxide, and subsequent silica removal to produce mesoporous metal oxide and N-doped macroporous graphene simultaneously is reported. Four mesoporous metal oxides (WO3-x, Co3O4, Mn2O3, and Fe3O4) are encapsulated in N-doped macroporous graphene. Used as an anode material for sodium-ion hybrid supercapacitors (Na-HSCs), mesoporous reduced tungsten oxide@ N-doped macroporous graphene (m-WO3-x@ NM-rGO) gives outstanding rate capability and stable cycle life. Ex situ analyses suggest that the electrochemical reaction mechanism of m-WO3-x@ NM-rGO is based on Na+ intercalation/de-intercalation. To the best of knowledge, this is the first report on Na+ intercalation/de-intercalation properties of WO3-x and its application to Na-HSCs.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleGeneral Synthesis of N-Doped Macroporous Graphene-Encapsulated Mesoporous Metal Oxides and Their Application as New Anode Materials for Sodium-Ion Hybrid Supercapacitors-
dc.typeArticle-
dc.identifier.wosid000391926700006-
dc.identifier.scopusid2-s2.0-85005917740-
dc.type.rimsART-
dc.citation.volume27-
dc.citation.issue3-
dc.citation.beginningpage1603921-
dc.citation.publicationnameADVANCED FUNCTIONAL MATERIALS-
dc.identifier.doi10.1002/adfm.201603921-
dc.contributor.localauthorLee, Jinwoo-
dc.contributor.nonIdAuthorKim, Min Su-
dc.contributor.nonIdAuthorLim, Eunho-
dc.contributor.nonIdAuthorKim, Seongbeen-
dc.contributor.nonIdAuthorJo, Changshin-
dc.contributor.nonIdAuthorChun, Jinyoung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusLITHIUM STORAGE-
dc.subject.keywordPlusREVERSIBLE CAPACITY-
dc.subject.keywordPlusNEGATIVE ELECTRODE-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusENERGY-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 126 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0