A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 190
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHur, Ji-Hyunko
dc.contributor.authorLee, Dongsooko
dc.contributor.authorJeon, Sanghunko
dc.date.accessioned2018-03-21T02:53:18Z-
dc.date.available2018-03-21T02:53:18Z-
dc.date.created2018-03-07-
dc.date.created2018-03-07-
dc.date.issued2015-11-
dc.identifier.citationAPPLIED PHYSICS LETTERS, v.107, no.20-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10203/240772-
dc.description.abstractA model that describes bilayered bipolar resistive random access memory (BL-ReRAM) switching in oxide with a large band gap is presented. It is shown that, owing to the large energy barrier between the electrode and thin oxide layer, the electronic conduction is dominated by trap-assisted tunneling. The model is composed of an atomic oxygen vacancy migration model and an electronic tunneling conduction model. We also show experimentally observed three-resistance-level switching in Ru/ZrO2/TaOx BL-ReRAM that can be explained by the two types of traps, i. e., shallow and deep traps in ZrO2. (c) 2015 AIP Publishing LLC.-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.titleA Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides-
dc.typeArticle-
dc.identifier.wosid000365688700064-
dc.identifier.scopusid2-s2.0-84947967079-
dc.type.rimsART-
dc.citation.volume107-
dc.citation.issue20-
dc.citation.publicationnameAPPLIED PHYSICS LETTERS-
dc.identifier.doi10.1063/1.4935980-
dc.contributor.localauthorJeon, Sanghun-
dc.contributor.nonIdAuthorHur, Ji-Hyun-
dc.contributor.nonIdAuthorLee, Dongsoo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0