Enhanced Capacitive Deionization by Dispersion of CNTs in Activated Carbon Electrode

Cited 68 time in webofscience Cited 0 time in scopus
  • Hit : 441
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Binko
dc.contributor.authorPark, Namsooko
dc.contributor.authorKang, Kyung Sukko
dc.contributor.authorRyu, Ho Jinko
dc.contributor.authorHong, Soon Hyungko
dc.date.accessioned2018-03-21T02:23:15Z-
dc.date.available2018-03-21T02:23:15Z-
dc.date.created2017-12-22-
dc.date.created2017-12-22-
dc.date.issued2018-02-
dc.identifier.citationACS Sustainable Chemistry & Engineering, v.6, no.2, pp.1572 - 1579-
dc.identifier.issn2168-0485-
dc.identifier.urihttp://hdl.handle.net/10203/240627-
dc.description.abstractEnergy-effective, ecofriendly desalination is a technology in universal demand due to global water scarcity. Capacitive deionization (CDI) is a promising method that has those advantages, but it is still necessary to enhance desalination performance to desalinate high-concentration raw salt water. In this work, carbon nanotubes (CNTs) are used as a conductive agent of the CDI electrode. To use CNTs as a conductive agent, we examine the effect of the dispersion status of the CNTs within activated carbon active material on the CDI performance. Acid treatment-functionalization of CNTs created a better dispersion status than CNTs without any treatment. Homogeneously dispersed CNTs showed enhanced electrochemical and desalination performance. Interestingly, desalination tests with highly concentrated raw salt water achieved a more notable improvement with 13.9% at only 1 wt % of CNT dispersion. The improvement mechanisms with dispersing CNTs such as increment of surface area and decrement of electrode resistivity are analyzed.-
dc.languageEnglish-
dc.publisherACS Publication-
dc.subjectREDUCED GRAPHENE OXIDE-
dc.subjectPERFORMANCE-
dc.subjectNANOTUBES-
dc.subjectCOMPOSITE-
dc.subjectDESALINATION-
dc.subjectHYBRID-
dc.titleEnhanced Capacitive Deionization by Dispersion of CNTs in Activated Carbon Electrode-
dc.typeArticle-
dc.identifier.wosid000424728300011-
dc.identifier.scopusid2-s2.0-85038590548-
dc.type.rimsART-
dc.citation.volume6-
dc.citation.issue2-
dc.citation.beginningpage1572-
dc.citation.endingpage1579-
dc.citation.publicationnameACS Sustainable Chemistry & Engineering-
dc.identifier.doi10.1021/acssuschemeng.7b01750-
dc.contributor.localauthorRyu, Ho Jin-
dc.contributor.localauthorHong, Soon Hyung-
dc.contributor.nonIdAuthorLee, Bin-
dc.contributor.nonIdAuthorPark, Namsoo-
dc.contributor.nonIdAuthorKang, Kyung Suk-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCapacitive deionization-
dc.subject.keywordAuthorCDI-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorActivated carbon-
dc.subject.keywordAuthorDesalination-
dc.subject.keywordAuthorFunctionalization-
dc.subject.keywordPlusREDUCED GRAPHENE OXIDE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusDESALINATION-
dc.subject.keywordPlusHYBRID-
Appears in Collection
NE-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 68 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0