Enhanced oxygen exchange of perovskite oxide surfaces through strain-driven chemical stabilization

Cited 80 time in webofscience Cited 0 time in scopus
  • Hit : 354
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKoo, Bonjaeko
dc.contributor.authorKwon, Hyungukko
dc.contributor.authorKim, YeonJuko
dc.contributor.authorSeo, Han Gilko
dc.contributor.authorHan, Jeong Wooko
dc.contributor.authorJung, Woo Chulko
dc.date.accessioned2018-02-21T06:04:46Z-
dc.date.available2018-02-21T06:04:46Z-
dc.date.created2017-12-21-
dc.date.created2017-12-21-
dc.date.issued2018-01-
dc.identifier.citationENERGY & ENVIRONMENTAL SCIENCE, v.11, no.1, pp.71 - 77-
dc.identifier.issn1754-5692-
dc.identifier.urihttp://hdl.handle.net/10203/240235-
dc.description.abstractSurface cation segregation and phase separation, of strontium in particular, have been suggested to be the key reason behind the chemical instability of perovskite oxide surfaces and the corresponding performance degradation of solid oxide electrochemical cell electrodes. However, there is no well-established solution for effectively suppressing Sr-related surface instabilities. Here, we control the degree of Sr-excess at the surface of SrTi0.5Fe0.5O3-delta thin films, a model mixed conducting perovskite O-2-electrode, through lattice strain, which significantly improves the electrode surface reactivity. Combined theoretical and experimental analyses reveal that Sr cations are intrinsically under a compressive state in the SrTi0.5Fe0.5O3-delta lattice and that the Sr-O bonds are weakened by the local pressure around the Sr cation, which is the key origin of surface Sr enrichment. Based on these findings, we successfully demonstrate that when a large-sized isovalent dopant is added, Sr-excess can be remarkably alleviated, improving the chemical stability of the resulting perovskite O-2-electrodes.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectFUEL-CELL CATHODES-
dc.subjectELECTRONIC-STRUCTURE-
dc.subjectCATION SEGREGATION-
dc.subjectSR SEGREGATION-
dc.subjectTHIN-FILMS-
dc.subjectPERFORMANCE-
dc.subjectSTABILITY-
dc.subjectDEGRADATION-
dc.subjectCHEMISTRY-
dc.subjectKINETICS-
dc.titleEnhanced oxygen exchange of perovskite oxide surfaces through strain-driven chemical stabilization-
dc.typeArticle-
dc.identifier.wosid000423017000005-
dc.identifier.scopusid2-s2.0-85040944310-
dc.type.rimsART-
dc.citation.volume11-
dc.citation.issue1-
dc.citation.beginningpage71-
dc.citation.endingpage77-
dc.citation.publicationnameENERGY & ENVIRONMENTAL SCIENCE-
dc.identifier.doi10.1039/c7ee00770a-
dc.contributor.localauthorJung, Woo Chul-
dc.contributor.nonIdAuthorKwon, Hyunguk-
dc.contributor.nonIdAuthorHan, Jeong Woo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusFUEL-CELL CATHODES-
dc.subject.keywordPlusELECTRONIC-STRUCTURE-
dc.subject.keywordPlusCATION SEGREGATION-
dc.subject.keywordPlusSR SEGREGATION-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusKINETICS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 80 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0