Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications

Cited 32 time in webofscience Cited 0 time in scopus
  • Hit : 343
  • Download : 0
Multifunctional carbon-based nanodots (C-dots) are synthesized using atmospheric plasma treatments involving reactive gases (oxygen and nitrogen). Surface design was achieved through one-step plasma treatment of C-dots (AC-paints) from polyethylene glycol used as a precursor. These AC-paints show high fluorescence, low cytotoxicity and excellent cellular imaging capability. They exhibit bright fluorescence with a quantum yield twice of traditional C-dots. The cytotoxicity of AC-paints was tested on BEAS2B, THLE2, A549 and hep3B cell lines. The in vivo experiments further demonstrated the bio-compatibility of AC-paints using zebrafish as a model, and imaging tests demonstrated that the AC-paints can be used as bio-labels (at a concentration of < 5 mg mL(-1)). Particularly, the oxygen plasma-treated AC-paints (AC-paints-O) show antibacterial effects due to increased levels of reactive oxygen species (ROS) in AC-paints (at a concentration of > 1 mg mL(-1)). AC-paints can effectively inhibit the growth of Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). Such remarkable performance of the AC-paints has important applications in the biomedical field and environmental systems.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2017-07
Language
English
Article Type
Article
Citation

NANOSCALE, v.9, no.26, pp.9210 - 9217

ISSN
2040-3364
DOI
10.1039/c7nr03026f
URI
http://hdl.handle.net/10203/226466
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 32 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0