Role of Ordered Ni atoms in Li Layers for Li-rich Layered Cathode Materials

Cited 39 time in webofscience Cited 0 time in scopus
  • Hit : 631
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYang, Moon Youngko
dc.contributor.authorKim, Sangryunko
dc.contributor.authorKim, Kyungsuko
dc.contributor.authorCho, Woosukko
dc.contributor.authorChoi, Jang Wookko
dc.contributor.authorNam, Yoon Sungko
dc.date.accessioned2017-10-23T02:00:20Z-
dc.date.available2017-10-23T02:00:20Z-
dc.date.created2017-06-26-
dc.date.created2017-06-26-
dc.date.issued2017-09-
dc.identifier.citationADVANCED FUNCTIONAL MATERIALS, v.27, no.35-
dc.identifier.issn1616-301X-
dc.identifier.urihttp://hdl.handle.net/10203/226454-
dc.description.abstractLi-rich layered oxide materials are promising candidates for high-energy Li-ion batteries. They show high capacities of over 200 mAh g(-1) with the additional occupation of Li in their transition metal layers; however, the poor cycle performance induced by an irreversible phase transition limits their use in practical applications. In recent work, an atomic-scale modified surface, in which Ni is ordered at 2c sites in the Li layers, significantly improves the performance in terms of reversible capacity and cycling stability. The role of the incorporated Ni on this performance, however, is not yet clearly understood. Here, the effects of the ordered Ni on Li battery performance are presented, based on first-principles calculations and experimental observations. The Ni substitution suppresses the oxygen loss by moderating the oxidation of oxygen ions during the delithiation process and forms bonds with adjacent oxygen after the first deintercalation of Li ions. These Ni-O bonds contribute to the formation of a solid surface, resulting in the improved cycling stability. Moreover, the multivalent Ni suppresses Mn migration to the Li-sites that causes the undesired phase transition. These findings from theoretical calculations and experimental observations provide insights to enhance the electrochemical performance of Li-rich layered oxides.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectLITHIUM-ION BATTERIES-
dc.subjectLI2MNO3 POSITIVE ELECTRODE-
dc.subjectX-RAY-DIFFRACTION-
dc.subjectELECTROCHEMICAL ACTIVITY-
dc.subjectCARBOTHERMAL REDUCTION-
dc.subjectSTRUCTURAL STABILITY-
dc.subjectPHASE-TRANSFORMATION-
dc.subjectMANGANESE OXIDES-
dc.subjectSPINEL PHASE-
dc.subject1ST-PRINCIPLES-
dc.titleRole of Ordered Ni atoms in Li Layers for Li-rich Layered Cathode Materials-
dc.typeArticle-
dc.identifier.wosid000411027300016-
dc.identifier.scopusid2-s2.0-85026527203-
dc.type.rimsART-
dc.citation.volume27-
dc.citation.issue35-
dc.citation.publicationnameADVANCED FUNCTIONAL MATERIALS-
dc.identifier.doi10.1002/adfm.201700982-
dc.contributor.localauthorChoi, Jang Wook-
dc.contributor.localauthorNam, Yoon Sung-
dc.contributor.nonIdAuthorKim, Sangryun-
dc.contributor.nonIdAuthorKim, Kyungsu-
dc.contributor.nonIdAuthorCho, Woosuk-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorfirst-principles calculations-
dc.subject.keywordAuthorLi-rich layered oxides-
dc.subject.keywordAuthoroxygen loss-
dc.subject.keywordAuthorphase transition-
dc.subject.keywordAuthorsurface modification-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusLI2MNO3 POSITIVE ELECTRODE-
dc.subject.keywordPlusX-RAY-DIFFRACTION-
dc.subject.keywordPlusELECTROCHEMICAL ACTIVITY-
dc.subject.keywordPlusCARBOTHERMAL REDUCTION-
dc.subject.keywordPlusSTRUCTURAL STABILITY-
dc.subject.keywordPlusPHASE-TRANSFORMATION-
dc.subject.keywordPlusMANGANESE OXIDES-
dc.subject.keywordPlusSPINEL PHASE-
dc.subject.keywordPlus1ST-PRINCIPLES-
Appears in Collection
EEW-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 39 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0