Mesoporous SnO2 Nanotubes via Electrospinning-Etching Route: Highly Sensitive and Selective Detection of H2S Molecule

Cited 87 time in webofscience Cited 0 time in scopus
  • Hit : 296
  • Download : 0
We report the facile synthesis of thin-walled SnO2 nanotubes (NTs) with numerous clustered pores (pore radius 6.56 nm) and high surface area (125.63 m(2)/g) via selective etching of core (SiO2) region in SiO2-SnO2 composite nanofibers (NFs), in which SnO2 phase preferentially occupies the shell while SiO2 is concentrated in the center of the composite NFs. The SiO2-etched SnO2 NTs are composed of ultrasmall crystallites (similar to 6 nm in size) originating from crystal growth inhibition by small SiO2 domains, which are partially segregated in the polycrystalline SnO2 shell during calcination. These features account for efficacious diffusion and innumerable active sites, which maximize interaction between background gas (air) and analyte gas (H2S). Evaluation of gas-sensing performance of the porous SnO2 NTs before and after decorating the exterior and interior walls with Pt nanoparticles (NPs) reveals exceptional selectivity and superior response (R-a/R-g) of 154.8 and 89.3 to 5 and 1 ppm of H2S, respectively. Excellent gas-sensing characteristics are attributed to the porous topography, nanosized crystallites, high surface area, and the catalytic activity of Pt/PtOx NPs.
Publisher
AMER CHEMICAL SOC
Issue Date
2017-08
Language
English
Article Type
Article
Keywords

GAS-SENSING APPLICATIONS; HYDROGEN-SULFIDE; FACILE SYNTHESIS; STRUCTURAL EVOLUTION; EXHALED-BREATH; THIN-FILMS; SENSORS; PERFORMANCE; NANOPARTICLES; NANOFIBERS

Citation

ACS APPLIED MATERIALS & INTERFACES, v.9, no.31, pp.26304 - 26313

ISSN
1944-8244
DOI
10.1021/acsami.7b05241
URI
http://hdl.handle.net/10203/225833
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 87 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0