MHz gravitational wave constraints with decameter Michelson interferometers

Cited 46 time in webofscience Cited 0 time in scopus
  • Hit : 312
  • Download : 0
A new detector, the Fermilab Holometer, consists of separate yet identical 39-meter Michelson interferometers. Strain sensitivity achieved is better than 10(-21) / root Hz between 1 to 13 MHz from a 130-h data set. This measurement exceeds the sensitivity and frequency range made from previous high frequency gravitational wave experiments by many orders of magnitude. Constraints are placed on a stochastic background at 382 Hz resolution. The 3 sigma upper limit on Omega(GW), the gravitational wave energy density normalized to the closure density, ranges from 5.6 x 10(12) at 1 MHz to 8.4 x 10(15) at 13 MHz. Another result from the same data set is a search for nearby primordial black hole binaries (PBHB). There are no detectable monochromatic PBHBs in the mass range 0.83-3.5 x 10(21) g between the Earth and the Moon. Projections for a chirp search with the same data set increase the mass range to 0.59 - 2.5 x 10(25) g and distances out to Jupiter. This result presents a new method for placing limits on a poorly constrained mass range of primordial black holes. Additionally, solar system searches for PBHBs place limits on their contribution to the total dark matter fraction.
Publisher
AMER PHYSICAL SOC
Issue Date
2017-03
Language
English
Article Type
Article
Keywords

DETECTOR

Citation

PHYSICAL REVIEW D, v.95, no.6

ISSN
2470-0010
DOI
10.1103/PhysRevD.95.063002
URI
http://hdl.handle.net/10203/223255
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 46 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0