Ultrafast Discharge/Charge Rate and Robust Cycle Life for High-Performance Energy Storage Using Ultrafine Nanocrystals on the Binder-Free Porous Graphene Foam

Cited 51 time in webofscience Cited 0 time in scopus
  • Hit : 1093
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Gyu Heonko
dc.contributor.authorLee, Jung Wooko
dc.contributor.authorChoi, Ji Ilko
dc.contributor.authorKim, Sang Junko
dc.contributor.authorKim, Yong-Hoonko
dc.contributor.authorKang, Jeung Kuko
dc.date.accessioned2016-10-04T08:59:05Z-
dc.date.available2016-10-04T08:59:05Z-
dc.date.created2016-09-21-
dc.date.created2016-09-21-
dc.date.created2016-09-21-
dc.date.created2016-09-21-
dc.date.created2016-09-21-
dc.date.issued2016-07-
dc.identifier.citationADVANCED FUNCTIONAL MATERIALS, v.26, no.28, pp.5139 - 5148-
dc.identifier.issn1616-301X-
dc.identifier.urihttp://hdl.handle.net/10203/213180-
dc.description.abstractA hierarchical architecture fabricated by integrating ultrafine titanium dioxide (TiO2) nanocrystals with the binder-free macroporous graphene (PG) network foam for high-performance energy storage is demonstrated, where mesoporous open channels connected to the PG facilitate rapid ionic transfer during the Li-ion insertion/extraction process. Moreover, the binder-free conductive PG network in direct contact with a current collector provides ultrafast electronic transfer. This structure leads to unprecedented cycle stability, with the capacity preserved with nearly 100% Coulombic efficiency over 10 000 Li-ion insertion/extraction cycles. Moreover, it is proven to be very stable while cycling 10 to 100-fold longer compared to typical electrode structures for batteries. This facilitates ultrafast charge/discharge rate capability even at a high current rate giving a very short charge/discharge time of 40 s. Density functional theory calculations also clarify that Li ions migrate into the TiO2-PG interface then stabilizing its binder-free interface and that the Li ion diffusion occurs via a concerted mechanism, thus resulting in the ultrafast discharge/charge rate capability of the Li ions into ultrafine nanocrystals-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleUltrafast Discharge/Charge Rate and Robust Cycle Life for High-Performance Energy Storage Using Ultrafine Nanocrystals on the Binder-Free Porous Graphene Foam-
dc.typeArticle-
dc.identifier.wosid000380890200016-
dc.identifier.scopusid2-s2.0-84979276910-
dc.type.rimsART-
dc.citation.volume26-
dc.citation.issue28-
dc.citation.beginningpage5139-
dc.citation.endingpage5148-
dc.citation.publicationnameADVANCED FUNCTIONAL MATERIALS-
dc.identifier.doi10.1002/adfm.201601355-
dc.contributor.localauthorKim, Yong-Hoon-
dc.contributor.localauthorKang, Jeung Ku-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusCHEMICAL-REDUCTION-
dc.subject.keywordPlusTIO2 ANATASE-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusCAPACITY-
Appears in Collection
EE-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 51 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0