Polymeric Inverse Glasses for Development of Noniridescent Structural Colors in Full Visible Range

Cited 28 time in webofscience Cited 0 time in scopus
  • Hit : 234
  • Download : 0
Amorphous colloidal array with short-range order displays noniridescent structural colors due to the isotropic nature of the colloidal arrangement. The low angle dependence renders the colloidal glasses, which is promising for various coloration applications. Nevertheless, the colloidal glasses are difficult to develop red structural color due to strong cavity-like resonance from individual particles in the blue region. To suppress the cavity mode and develop the colors in the full visible range, we prepare inverse glasses composed of amorphous array of air cavities with short-range order. To produce the structures in a simple and reproducible manner, monodisperse silica particles are dispersed in a photocurable resin of poly(ethylene glycol) dimethacrylate (PEGDMA) at a volume fraction of 0.3. The particles spontaneously form the amorphous array with short-range order, which is rapidly captured in polymeric films by photopolymerization of the resin. Selective removal of silica particles from the polymerized resin leaves behind amorphous array of air cavities. The inverse glasses display structural colors with negligible backscattering in blue due to short optical path and low index in each cavity. Therefore, the colors can be tuned in full visible range by simply controlling the cavity size. The photocurable suspensions of silica particles can be patterned by photolithography, which enables the production of freestanding films containing patterned inverse glasses with noniridescent structural colors
Publisher
AMER CHEMICAL SOC
Issue Date
2016-05
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.8, no.19, pp.12473 - 12480

ISSN
1944-8244
DOI
10.1021/acsami.6b03217
URI
http://hdl.handle.net/10203/210185
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0