Measurement of the indium concentration in high indium content InGaN layers by scanning transmission electron microscopy and atom probe tomography

Cited 34 time in webofscience Cited 35 time in scopus
  • Hit : 267
  • Download : 548
DC FieldValueLanguage
dc.contributor.authorMehrtens, T.ko
dc.contributor.authorSchowalter, M.ko
dc.contributor.authorTytko, D.ko
dc.contributor.authorChoi, Pyuck-Pako
dc.contributor.authorRaabe, D.ko
dc.contributor.authorHoffmann, L.ko
dc.contributor.authorJoenen, H.ko
dc.contributor.authorRossow, U.ko
dc.contributor.authorHangleiter, A.ko
dc.contributor.authorRosenauer, A.ko
dc.date.accessioned2016-07-04T02:06:36Z-
dc.date.available2016-07-04T02:06:36Z-
dc.date.created2016-02-05-
dc.date.created2016-02-05-
dc.date.issued2013-04-
dc.identifier.citationAPPLIED PHYSICS LETTERS, v.102, no.13-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10203/208916-
dc.description.abstractA method for determining concentrations from high-angle annular dark field-scanning transmission electron microscopy images is presented. The method is applied to an InGaN/GaN multi-quantum well structure with high In content, as used for the fabrication of light emitting diodes and laser diodes emitting in the green spectral range. Information on specimen thickness and In concentration is extracted by comparison with multislice calculations. Resulting concentration profiles are in good agreement with a comparative atom probe tomography analysis. Indium concentrations in the quantum wells ranging from 26 at. % to 33 at. % are measured in both cases. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799382-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.subjectDARK-FIELD IMAGES-
dc.subjectSPECIMEN PREPARATION-
dc.subjectSEMICONDUCTORS-
dc.subjectENERGY-
dc.titleMeasurement of the indium concentration in high indium content InGaN layers by scanning transmission electron microscopy and atom probe tomography-
dc.typeArticle-
dc.identifier.wosid000317240200046-
dc.identifier.scopusid2-s2.0-84876098785-
dc.type.rimsART-
dc.citation.volume102-
dc.citation.issue13-
dc.citation.publicationnameAPPLIED PHYSICS LETTERS-
dc.identifier.doi10.1063/1.4799382-
dc.contributor.localauthorChoi, Pyuck-Pa-
dc.contributor.nonIdAuthorMehrtens, T.-
dc.contributor.nonIdAuthorSchowalter, M.-
dc.contributor.nonIdAuthorTytko, D.-
dc.contributor.nonIdAuthorRaabe, D.-
dc.contributor.nonIdAuthorHoffmann, L.-
dc.contributor.nonIdAuthorJoenen, H.-
dc.contributor.nonIdAuthorRossow, U.-
dc.contributor.nonIdAuthorHangleiter, A.-
dc.contributor.nonIdAuthorRosenauer, A.-
dc.type.journalArticleArticle-
dc.subject.keywordPlusDARK-FIELD IMAGES-
dc.subject.keywordPlusSPECIMEN PREPARATION-
dc.subject.keywordPlusSEMICONDUCTORS-
dc.subject.keywordPlusENERGY-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0